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Abstract
Energy efficiency is one of the most important design con-
siderations in running modern datacenters. Datacenter oper-
ating systems rely on software techniques such as execution
migration to achieve energy efficiency across pools of ma-
chines. Execution migration is possible in datacenters today
because they consist mainly of homogeneous-ISA machines.
However, recent market trends indicate that alternate ISAs
such as ARM and PowerPC are pushing into the datacen-
ter, meaning current execution migration techniques are no
longer applicable. How can execution migration be applied
in future heterogeneous-ISA datacenters?

In this work we present a compiler, runtime, and an oper-
ating system extension for enabling execution migration be-
tween heterogeneous-ISA servers. We present a new multi-
ISA binary architecture and heterogeneous-OS containers
for facilitating efficient migration of natively-compiled ap-
plications. We build and evaluate a prototype of our design
and demonstrate energy savings of up to 66% for a workload
running on an ARM and an x86 server interconnected by a
high-speed network.

CCS Concepts •Software and its engineering→ Oper-
ating systems; Compilers; •Computer systems organi-
zation→ Heterogeneous (hybrid) systems

Keywords Heterogeneous ISAs; replicated-kernel OS; com-
pilers; process migration; state transformation

1. Introduction
The x86 instruction set architecture is the de-facto ISA of
the datacenter today [35, 46, 55, 59]. However, a new gen-
eration of servers built with different ISAs are becoming in-
creasingly common. Multiple chip vendors, including AMD,
Qualcomm, APM, and Cavium, are already producing ARM
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processors for the datacenter [4, 6, 19, 31, 54]. The PowerPC
ISA is also gaining traction, with IBM forming the Open-
POWER foundation by partnering with companies such as
Google, NVIDIA, Mellanox and others [45]. These new
servers promise to have higher energy proportionality [13],
reduce costs, boost performance per dollar, and increase den-
sity per rack [62, 63]. Increasing interest in alternative server
architectures is shown by a number of works that analyze the
advantages of these new servers compared to x86 [3, 8, 36,
45, 60]. Interest is also driven by the increasing availability
of ARM and PowerPC cloud offerings [41, 43, 47, 56] in
addition to traditional x86 servers. It is therefore clear that
the datacenter, now mostly built with single-ISA heteroge-
neous machines [46, 65], will be increasingly populated by
heterogeneous-ISA machines.

Cutting electricity costs has become one of the most im-
portant concerns for datacenter operators [73]. Energy pro-
portionality [13] has become an important design criterion,
leading hardware and software architects to design more
efficient solutions [65, 67, 68, 70, 73]. There are several
software-based approaches that are effective for conserving
energy, including load balancing and consolidation. Load
balancing spreads the current workload evenly across nodes,
while consolidation groups tasks on a minimal number of
nodes and puts the rest in a low-power state. Both solutions
migrate tasks between machines using techniques such as
virtual machine migration [44, 49, 67], or more recently con-
tainer migration [5]. Using these techniques allows datacen-
ter operators to conserve energy and adjust the datacenter’s
computational capacity in response to changing workloads.

Increasing instruction set architecture diversity in the dat-
acenter raises questions about the continued use of execution
migration to achieve energy efficiency. Can applications be
migrated across machines of different ISAs, and is there any
energy advantage for migration?

In this work we introduce system software that pre-
pares native applications (i.e., applications written in non-
managed languages), to be deployable on multiple ISAs
and to be migratable during execution. Execution migra-
tion is supported by an operating system extension, called
heterogeneous OS-containers, that allows for a Linux con-
tainer to migrate among Linux instances seamlessly, despite



differences in ISA. We approach the problem as an appli-
cation state transformation problem [7] in user-space, and
present techniques to minimize the amount of state to be
transformed to enable fast migration. Additionally, we lever-
age a replicated-kernel OS [12] in which OS services are
distributed, and thus their state can be migrated between
servers. We evaluate a prototype on two heterogeneous-ISA
servers, an ARM and an x86 server, showing that there is up
to a 30% energy savings on some workload mixes, with dif-
ferent projected energy costs for several scheduling policies.
Due to these advantages, we predict greater benefits can be
obtained at the rack or datacenter scale. Thus, in this work
we present the following contributions:

• A formalization of software state for multi-threaded ap-
plications running on a process-model monolithic operat-
ing system and an analysis of its dependence on the ISA.

• A new software architecture which stretches applica-
tions and operating system sub-environments (contain-
ers) across heterogeneous-ISA servers, allowing applica-
tions to run natively and migrate between servers dynam-
ically.

• A set of techniques and mechanisms at various levels of
the system software stack that implement the proposed
architecture, i.e., multi-ISA binaries containing a trans-
formation runtime, and heterogeneous OS-containers.

• A prototype built on the Linux ecosystem using Popcorn
Linux [12], LLVM, and muslc, and evaluated on a dual-
server setup equipped with ARM and x86 processors.

Section 2 discusses the background and motivation for
redesigned system software, Section 3 introduces a formal
model of software for multi-threaded applications running
on an SMP OS, and Section 4 uses the model to describe
the proposed software architecture. Section 5 describes our
prototype’s implementation details for both the OS and com-
piler/runtime. In Section 6 and Section 7, we describe the ex-
perimental setup and evaluate our implementation. Section 8
discusses related work and Section 9 concludes.

2. Background and Motivation
Datacenter operators, including cloud providers, manage
their fleet of machines as pools of resources. Modern clus-
ter management software, i.e., datacenter operating sys-
tems [57, 72], extend the concept of single machine oper-
ating systems to a pool of machines. This software abstracts
away management of individual machines and allows devel-
opers to manage resource pools as a single entity, similarly
to an operating system managing processing, memory, and
storage resources in a single computer. Example datacenter
OSs include OpenStack [18], Mesosphere/Mesos [32, 48],
and Kubernetes [17].

One of the key characteristics of datacenter OSs is that
multiple applications can be run on the same cluster. Con-
currently executing applications share resources, maximiz-

ing cluster utilization and increasing energy efficiency. To
achieve economic utilization of cluster resources, datacen-
ter OSs both load balance across machines and consolidate
jobs to fewer nodes. Load balancing [37, 53] spreads the
current workload evenly across nodes, using equal resources
on each machine for reduced power consumption. Although
this solution may not maximize energy efficiency, it allows
datacenter operators to react quickly to load spikes. Alter-
natively, consolidating workload onto fewer servers at run-
time is one of the most effective approaches for reducing
power consumption. The machines executing the workload
are run at high capacity (expending significant amounts of
power), while the remaining machines are either placed in
a low-power state or are completely shut down. This has
been shown to increase energy proportionality at the group-
of-machines “ensemble” level [65], but reduces the ability of
the datacenter to react quickly to workload spikes. Both tech-
niques statically assign jobs to nodes. However, advanced
versions of these techniques may also dynamically migrate
jobs between nodes, which are today assumed to be homo-
geneous (or at least single-ISA heterogeneous [46]).

Heterogeneous-ISA Datacenters. As heterogeneous-
ISA servers are introduced into the datacenter, resource
managers are constrained to either splitting the datacenter
into multiple per-ISA partitions or statically allocating jobs
to machines. Splitting the datacenter into per-ISA partitions
allows resource managers to load balance and consolidate
tasks across a subset of servers. This is the current model,
as ARM and x86 cloud providers [41, 56] offer separate
ARM and x86 partitions (e.g., OpenStack zones) to cus-
tomers. Partitioning resources has many disadvantages [32]
– for example, one partition could be idle while another is
overloaded, leading to wasted processing power and service
disruption. The capability to move jobs across partitions is
needed to cope with varying workloads.

Native applications can be compiled for heterogeneous-
ISA servers, but cannot migrate between them at runtime.
Applications written using retargetable or intermediate lan-
guages (e.g., Java, python, etc.) can run on heterogeneous-
ISA servers, but are usually statically assigned to servers.
Although there are tools that implement execution migration
for these languages [27, 28], migrating stateful applications
is costly due to the serialization/de-serialization process be-
tween ISA-specific formats. Additionally, many applications
are written in lower-level languages like C for efficiency rea-
sons (e.g., Redis [2]). Moving jobs between machines in-
creases energy proportionality [70], meaning inter-ISA mi-
gration is key for energy efficiency.

Execution Migration. Execution migration at the hy-
pervisor and application level is implemented by various
open-source and commercial products (e.g., VMware, Xen,
KVM/QEMU, Docker). Although it is not officially sup-
ported, it is possible to migrate an application between ARM
and x86 machines with KVM and QEMU. In order to under-
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Figure 1. Slowdown when emulating ARM applications on
x86 versus running natively on ARM (top graph) and the
reverse for native x86 applications in the bottom graph.

stand the costs of using KVM/QEMU to abstract the ISA,
we measured the slowdown when migrating an application
(including the operating system) between KVM on x86 and
QEMU on ARM. Figure 1 shows the slowdowns experi-
enced when running applications from the NPB benchmark
suite [9] in emulation versus native execution. The top graph
shows the slowdown experienced by applications (compiled
for ARM) when emulated on x86 versus running natively on
ARM. The bottom graph shows the slowdown experienced
by applications (compiled for x86) when emulated on ARM
versus running natively on x86. Additionally, the same ex-
periment for Redis, a typical datacenter application, incurs
2.6x slowdown for ARM and a 34x for x86. Clearly, using
emulation is not a suitable technique for hiding heterogene-
ity, as several applications experience slowdowns of several
orders of magnitude. The cost of emulation, even when using
Dynamic Binary Translation (DBT), is unacceptably high.

Software State and Code Mobility. Execution migration
in the traditional SMP programming model relies on the fact
that both applications and the OS share data in a common
format, as all cores are of the same ISA. Similarly, VM and
container migration exploits the fact that the same software
state can be migrated unmodified between homogeneous-
ISA machines. In the latter case, the hypervisor (for VMs)
or the operating system (for containers) provides a layer
of abstraction to mimic the same hardware and software
resources on different machines.

Today, when processors of different ISAs must communi-
cate or transfer application execution, mechanisms that make
the application distributed have been used to circumvent ISA
differences. However, these same mechanisms prevent exe-
cution migration. The Internet provides a common format
that stretches applications across multiple heterogeneous-
ISA nodes – messages are serialized from an ISA-specific
format into a pre-agreed format for all communication. Simi-
larly, code offloading and message passing require the devel-
oper to manually partition and map the application to each

processor in the system, with explicit communication be-
tween the different parts. Application state must be manually
split, copied, and kept consistent amongst all pieces, and the
boundaries between application components are fixed. Ad-
ditionally, serialization and de-serialization is necessary to
convert each piece of data between formats for each ISA.

We propose minimizing runtime conversion of state by
transforming binaries compiled for different ISAs to use a
common state format – i.e., memory can be migrated with-
out any transformation. For state that must be transformed,
the operating system and the runtime work together to trans-
form state and to enable execution migration with minimal
performance impact.

3. A Model of Software
We propose a formal model of software to describe execu-
tion migration. Software is composed of executable code
and data (e.g., constants, variables). We consider a model
in which executable code is compiled to native machine
code (i.e., no intermediate representation) and does not mu-
tate during program execution (i.e., no self modifying code).
During execution the state of the software includes the state
of the hardware – CPU registers, configuration and periph-
erals registers, etc.

We define a model of the state of the software for multi-
threaded applications running on a multi-tasking process-
model monolithic operating system. We consider operating
system services to be atomic [25]. For application software
running on such an operating system, the hardware-related
state is minimal (essentially, CPU registers) due to the OS’s
role in managing and abstracting access to hardware re-
sources. Hence, the hardware-related state is attributed to the
OS state. In our model the OS completely mediates IO, such
that an application’s address space exclusively maps mem-
ory – this model does not support mapping devices into vir-
tual memory, but can be easily extended to support it.

Application. The state of an application is a collection of
variables (data) and executable code. Each multithreaded ap-
plication includes a per-thread state for each thread i, Ti, and
a per-process state, P . If the application is multiprocess, the
model extends to sharing between multiple processes1. The
per-thread state contains thread local storage data (Li), user-
space stack (Si), and the user-space visible state of the CPU
(Ri). Li includes program- and library-declared per-thread
variables (e.g., variables declared with thread in GCC).
Hence, Ti =< Li, Si, Ri >. The per-process state includes
all other user-visible state that makes up the application’s
address space, such as global data structures allocated in the
heap or in the program’s data sections. P also includes the
application’s executable code (i.e., the .text section).

Operating System. The operating system state can be
also defined in terms of thread-related data. However, a for-

1 We do not consider this case in our formalization, although extending the
model to support multiprocess applications is trivial.



malization centered around the application is required to mi-
grate an application container. From the point of view of an
application thread executing in kernel-space, TK

i includes
the kernel stack (SK

i ), the kernel CPU registers (RK
i ), and

the kernel per-thread local data (LK
i , e.g., the thread con-

trol block). For a thread executing in user-space, TK
i only

includes the per-thread local data. Note that in message-
passing kernels, the thread’s receiver buffer state belongs to
either TK

i or Ti if the thread is executing in kernel- or user-
space, respectively. Thus, TK

i =< LK
i , S

K
i , R

K
i >. PK

is composed of all TK , interrupt state, and kernel thread
state for the kernel services used by a process. It also in-
cludes hardware-related state, e.g., the CPU’s page table.
Kernel state can be divided by operating system service Ox,
where x is a specific service. Because kernel services are
atomic from an application point of view, each kernel ser-
vice can be split into a per process state PK

j,x (for each user-
process j using that service), a kernel wide state Kx and
a hardware-related state Wx, if there is a hardware device
associated with that operating system service. Thus, each
operating system service’s state can be defined as Ox =<
Kx,Wx, P

K
0,x, .., P

K
k,x >, where there are k processes using

O (the model can be extended to support per-task state).

4. Architecture
We propose a redesign of system software in order to create
native applications that can be deployed on and seamlessly
migrated between heterogeneous-ISA machines. The data-
center OS already extends horizontally across multiple ma-
chines, independently of the ISA. Currently, however, native
applications can only be deployed on the ISA for which they
were compiled and cannot migrate among ISAs without pay-
ing a huge emulation overhead.

We introduce multi-ISA binaries and a runtime that en-
ables an application, compiled with a new toolchain, to have
a common address space layout on all ISAs for most ap-
plication state. State that is not laid out in a common for-
mat is converted between per-ISA formats dynamically dur-
ing migration, with minimal overhead. We present a series
of distributed services at the kernel level to enable seam-
less migration of applications in an OS container between
heterogeneous-ISA machines. Both user-space and kernel-
space state of applications is automatically transferred be-
tween machines. Thus, heterogeneous OS-containers elasti-
cally span across ISAs during execution migration.

Application. Seamlessly migrating a multithreaded ap-
plication between ISAs requires each application thread be
able to access code and data on all ISAs. Rather than at-
tempting to dynamically transform and keep application
state consistent in a per-ISA format, we propose to have
multi-ISA binaries in which each ISA’s machine code con-
forms to a single address space layout. The application’s data
and text, P , is kept in a common format across all ISAs. Ad-
ditionally, per-thread state Ti is kept in a common format

except where the layout is dictated by the underlying ISA
(register state Ri) or where changing the layout has signif-
icant performance cost (a thread’s stack, Si). We advocate
for a common format in order to avoid transformation costs.

To enforce a common state for an application P that will
run on ISA A (IA) and ISA B (IB), all symbols in the
application must have the same virtual address. This allows
the identity function to be used to map all state between ISA-
specific versions of the process, P IA = P IB (note that the
application binary will contain a .text section for IA and
for IB, but function symbols will be mapped to the same
virtual addresses). For each thread, the thread local data has
the same format on each ISA, LIA

i = LIB
i . However, to

allow the compiler to optimize stack frame layout for each
ISA, the stack is not kept in a common format and a separate
mapping function is used to convert each stack frame from
one ISA to the other, fAB() : SIA

i → SIB
i and fBA() :

SIB
i → SIA

i . Moreover, we define a state transformation
function rAB() : RIA

i → RIB
i and rBA() : RIB

i → RIA
i

that maps the program counter, the stack pointer and the
frame pointer between ISA-specific versions of the program.
However, fAB(), fBA(), rAB(), and rBA() are only valid
at certain points in the application’s execution, known as
equivalence points [69]. Equivalence points exist at function
boundaries, among other locations in the program.

Operating System. In the datacenter, each server runs a
natively compiled operating system kernel. The datacenter
operating system manages all servers somewhat similarly to
a multiple kernel OS [11, 14] but at a different scale. Our
architecture merges these two designs by introducing dis-
tributed operating system services (similarly to a replicated-
kernel OS) that present a containerized single working envi-
ronment to the application when migrating between servers.

The operating system is able to provide a single execu-
tion environment due to the fact that applications interact
with the operating system via a narrow interface: the syscall,
and in *NIX operating systems, the file system. Because OS
services are distributed, kernels can reproduce the same OS
interface and resource availability regardless of the architec-
ture on which the application is executing, providing a sin-
gle elastic operating environment. This single operating en-
vironment is maintained among kernels for the duration of
the application. Moreover, it supports applications running
among servers. After migration, the process’s data is kept on
the source kernel until there are residual dependencies, i.e.,
it has all been migrated.

For each operating system service Ox, the service on
ISA A (IA) and on ISA B (IB), OIA

x and OIB
x , keeps

the per-process state consistent among kernels. Thus, an
identity mapping applies to pAB() : PK,IA

x,j → PK,IB
x,j

or pBA() : PK,IB
x,j → PK,IA

x,j . Every time the state of a
service is updated on one kernel, it must be updated on all
other kernels (different services require different consistency
levels). This per-process state is the only part of the state that



must be kept consistent for kernel services running among
kernels. Most services are updated on-demand, that is when
the thread migrates to another ISA or after migration when
the thread requests a specific service (either explicitly or
implicitly).

4.1 System Software Redesign
In addition to a redesigned operating system and com-
piler toolchain, a runtime must provide state transforma-
tion where necessary. Thus, we advocate for a compiler
toolchain that produces multi-ISA binaries, a heteroge-
neous OS-container that allows execution migration between
heterogeneous-ISA machines, and a runtime that provides
state transformation for application state not laid out in a
common format.

Multi-ISA binaries and runtime. We propose a com-
piler toolchain that creates a binary per ISA. In addition to
creating a common virtual address space, the compiler in-
serts call-outs to the migration runtime at equivalence points,
called migration points, that allow the application to migrate
between architectures. The compiler also generates meta-
data that describes the functions to transform stack frames
(fAB() and fBA()) and register state (rAB() and rBA())
between ABIs at the inserted call-outs.

Heterogeneous Containers. The proposed software in-
frastructure allows the developer to write an application
targeting an SMP machine, and migrate it amongst multi-
ple diverse-ISA machines at runtime. The proposed soft-
ware architecture provides a single operating system sub-
environment across multiple kernels on different ISA ma-
chines, and migration amongst them. We call these OS vir-
tual machines heterogeneous OS-containers.

5. Implementation
We implemented a prototype of the proposed architecture on
two heterogeneous-ISA servers, with ARM and x86 proces-
sors (both 64-bit), interconnected through a low-latency net-
work via the PCIe bus. This is representative of future dat-
acenters due to the current dominance of x86 and the push
for ARM in the cloud. The prototype is based on the Linux
system software ecosystem to take advantage of its support
for many hardware architectures and the vast availability of
applications. However, we believe that the proposed archi-
tecture applies to other software ecosystems, including any
multiple-kernel operating system design (e.g., Barrelfish).
The multiple-kernel operating system which provides the
heterogeneous-OS container functionality is based on the
Linux kernel. The heterogeneous compiler toolchain is built
using clang/LLVM and GNU binutils. The runtime library
uses compiler-generated metadata and DWARF debugging
information for state transformation. The prototype currently
only targets applications written in C.

5.1 The Operating System
We extended the Popcorn Linux replicated-kernel OS [10,
12] to support heterogeneous-ISA machines. Popcorn is
based on the Linux kernel and re-implements several of its
operating system services in a distributed fashion. We ported
the original code to support ARMv8 (in particular, theAPM
X-Gene 1 platform [6]) as well as x86, 64-bit. Moreover,
we implemented a new messaging layer to support com-
munication between the two servers. We both introduced
new operating system services and redesigned previous ones
to support migratable heterogeneous containers, including
a heterogeneous-binary loader, heterogeneous distributed
shared memory (hDSM), and heterogeneous continuations.

The replicated-kernel OS consists of different kernels,
each compiled for and running on a different-ISA proces-
sor. Kernels do not share any data structures, but interact via
messages to provide applications the illusion of a single op-
erating environment amongst different processors. The OS
state is broken down into OS services, whose state is repli-
cated amongst kernels. The replicated state provides the illu-
sion of a single operating environment, thus enabling thread
and process migration and resource sharing among kernels.
Popcorn Linux introduces a thread migration operating sys-
tem service that provides the foundation for migrating a pro-
gram between kernels during execution. Heterogeneous-OS
containers are resource-constrained operating system envi-
ronments that migrate among kernels. Thus even if the ker-
nel is running on another ISA, the application accesses the
same file system, the same abstract hardware resources, the
same syscalls, etc. This is built extending Linux’s names-
paces and Popcorn Linux’s distributed services.

Heterogeneous distributed shared memory (hDSM).
The memory state of each migrating application is repli-
cated and kept consistent amongst kernels until all threads
of the same application migrate to the same kernel. DSM en-
ables on-demand migration of memory pages without forc-
ing all threads to migrate at once (i.e., no “stop-the-world”).
We extended the software DSM implemented in Popcorn
Linux [12] to support heterogeneous platforms (hDSM). We
added memory region aliasing, specifically for .text sec-
tions and vDSO sections. We disabled vsyscalls in order
to force all syscalls to enter the OS. Even if the specific inter-
connect we used between servers as well as recent network
technologies (e.g., RDMA) offer a form of shared memory
through PCIe, due to the higher latencies for each single op-
eration, we opted for a full DSM protocol between ARM
and x86 servers. In other words, the hDSM service migrates
pages in order to make subsequent memory accesses local
rather than repeatedly accessing remote memory.

Heterogeneous binary loader. We implemented hetero-
geneous binaries as one executable file per ISA (see Sec-
tion 5.2). Binaries contain an identical address space layout
but each has its own .text section natively compiled for
that ISA. Thus, the compiler provides a per-ISA version of



an application’s machine code. Each kernel loads the address
space of the application and executes that ISA’s native code.
When execution migrates between kernels, the machine code
mappings are switched to those of the destination ISA. This
is implemented in Linux’s ELF binary loader and integrated
within the hDSM kernel service, which aliases the .text

section of each ISA within the same virtual address range.
Thread migration and heterogeneous continuations.

This work extends a process model OS. Each application
thread has a user-space stack as well as a kernel-space stack.
The proposed software architecture manages each stack dif-
ferently. To facilitate user-level process and thread migra-
tion, threads use the same user-space stack regardless of
the ISA on which they are running. This design requires
transforming the user-space stack during migration (see Sec-
tion 5.2). Conversely, each thread has a per-ISA kernel-space
stack. This is handled similarly to a continuation [24]. An
application thread that is executing code in kernel space can-
not migrate during execution of a kernel service; otherwise,
service atomicity is lost. Moreover, kernel threads do not mi-
grate. When a user thread migrates amongst different-ISA
processors, the kernel provides a service that maps the pro-
gram counter, frame pointer, and stack pointer registers from
one ISA to the other.

Filesystem. Applications interact with the filesystem us-
ing file descriptors. When a thread migrates between archi-
tectures and performs file I/O, the file descriptor migration
service migrates file system state (e.g., filesystem metadata,
current file location) to the destination kernel. This state
is kept consistent (on demand) when threads on different
kernels access the same file. The kernels mount a network
filesystem (NFS), meaning the kernels are solely responsi-
ble for keeping in-kernel filesystem state coherent. We leave
cross-kernel networking support as future work.

5.2 The Compiler
The compiler is built on LLVM and ensures that data and
executable code are placed in the appropriate locations in
virtual memory so that the OS’s services can transparently
migrate applications between ISAs. The toolchain must also
provide these guarantees with minimal impact on perfor-
mance. Hence, for application state that is not laid out in
a common format (e.g., a thread’s runtime stack Si), state
transformation is provided by the runtime (Section 5.3).

There were two design goals for the compiler toolchain.
The first was to prepare applications to be migratable among
architectures without developer intervention. Hence, the
compiler needed to support traditional SMP semantics and
application interfaces, such as the standard C library, POSIX
threads library, etc. The second was to limit changes to the
core compiler itself. This allowed compiled applications to
benefit from existing compiler analyses and optimizations to
generate highly tuned machine code. Additionally, by limit-
ing changes to the generated code (e.g., no changes to stack

Figure 2. The compilation process and resulting cross-
binary virtual memory layout.

frame layout as required in [22, 66]), it makes the job of
porting the toolchain to new architectures simpler.

Compiler Architecture. We modified clang/LLVM [38]
as the compiler for ARM64 and x86-64. We also modified
the GNU gold [64] linker to change the application lay-
out to enforce a common address space among ISAs. The
compilation process is shown in Figure 2. After an ini-
tial profiling phase, the compiler inserts migration points
into the application source so that the application has the
chance to migrate between architectures more frequently.
Next, the toolchain runs standard compiler optimizations
and several custom passes over LLVM’s intermediate repre-
sentation (LLVM bitcode [1]) to enable symbol alignment.
Then, the architecture-specific backends generate binaries
for each available architecture in the system. Finally, all ap-
plication symbols are aligned so that global data are laid out
in a common format and code memory pages can be aliased
by the OS heterogeneous binary loader. We describe each
component in the following sections.

5.2.1 Migration Points
Because the kernel cannot interrupt and migrate threads be-
tween architectures at arbitrary locations, application threads
check if the scheduler has requested a migration at known-
good locations. These migration points are implemented en-
tirely in user-space. The kernel scheduler interacts with the
application through a shared memory page between user-
and kernel-space (vDSO). When the scheduler wants threads
to migrate, it sets a flag on the page requesting the migration.
At migration points threads check if the flag has been set,
and if so, they initiate the state transformation and migration
mechanisms detailed below.



Inserting Migration Points. Migration points can only
be inserted at equivalence points in the application source.
Function boundaries are naturally occurring equivalence
points, so the compiler automatically inserts migration
points at function entry and exit. Additionally, the compiler
can insert migration points into other locations in the source
in order to adjust the migration response time, i.e., the time
between when the scheduler requests a migration and when
the thread reaches a migration point. More migration points
means a lower migration response time, but higher overhead
due to more frequent migration request checks.

Optimizing Migration Point Frequency. The number of
migration points inserted into the code dictates the frequency
at which an application can be migrated between different
architectures. We developed a tool based on Valgrind [50] to
analyze the number of instructions between migration points
during an application’s lifetime. This analysis gives insight
into where additional migration points should be inserted
to minimize overhead from checking for migration requests
while maximizing migration flexibility. We used this analy-
sis to place additional migration points to enable the applica-
tion to migrate approximately once per scheduling quantum
(roughly 50 million instructions).

5.2.2 Symbol Alignment
After migration points have been inserted, the toolchain gen-
erates optimized LLVM bitcode and compiles a binary for
each target ISA. With the traditional compilation process
each binary has a different virtual memory layout due to dif-
ferences in symbol size, symbol padding, etc. The binaries
for each ISA must have aligned symbols so that accesses to
global data can be kept consistent by the hDSM service, and
calls to functions can be aliased to the per-architecture ver-
sion of the function by the heterogeneous binary loader. A
per-architecture linker script places data and function sym-
bols at the same virtual addresses for each binary.

Alignment Tool. We developed a Java tool that reads
symbol size and alignment information generated by the
linker, and generates a per-ISA linker script that aligns sym-
bols at identical virtual memory addresses. The tool aligns
symbols in loadable ELF sections (e.g., .text, .data,
.rodata, .bss, etc.) by progressively calculating their ad-
dresses in virtual memory. Aligning data symbols is simple,
as the primitive data types have the same sizes and align-
ments for ARM64 and x86-642. However, aligning function
symbols requires adding padding so that function sizes are
equivalent across binaries for all target architectures.

Thread-Local Storage (TLS). We also modified the gold
linker in order to ensure that TLS (and its associated reloca-
tions) was laid out in a common format across all binaries.
Thus, the TLS layout for all binaries was changed to map
symbols identically to the x86-64 TLS symbol mapping.

2 Architectures that have different primitive data sizes or alignments would
require more careful handling.

5.3 The Runtime
Migration between architectures requires additional runtime
support to transform per-thread state so that a migrating
thread can resume execution on the destination architecture.
The runtime must transform all state that is not laid out in
a common format – in particular, the stack (Si) must be
rewritten to conform to the destination architecture’s ABI,
and the destination architecture register state (Ri) must be
initialized to a known-good state. The runtime state trans-
formation mechanisms are activated at migration points, be-
fore migration occurs. Once the scheduler has requested a
thread migration, the runtime re-writes the stack and patches
up architecture-specific register state (e.g., the stack pointer,
link register, etc.). After state transformation is completed,
the thread makes a system call to the thread migration ser-
vice to migrate execution to the destination processor.

Stack Transformation. The stack transformation run-
time is responsible for converting each thread’s stack from
the current ABI to the destination ISA’s ABI. It does this
without restrictions on stack frame layout, meaning there are
no limitations preventing the compiler from doing aggres-
sive register allocation and optimizing the stack frame lay-
out for each architecture. The runtime attaches to a thread’s
stack at migration points and rewrites the stack frame-by-
frame in a single pass.

The runtime utilizes metadata generated by the compiler
for transformation. The compiler records the locations of
live variables at function call sites and generates DWARF
frame unwinding information so the runtime is able to tra-
verse the stack. Note that the runtime only needs live value
information at function call sites, as they are the only points
at which transformation can occur – the stack is by definition
a series of frames corresponding to live function invocations
(a chain of function calls), and the most recent function invo-
cation makes a call-out to a migration library, where special
handling begins the transformation process.

Stack transformation is performed in user-space, but is
hidden inside of the migration runtime. The runtime divides
a thread’s stack into two halves. When preparing for migra-
tion, the runtime rewrites from one half of the stack to the
other, and switches stacks right before invoking the thread
migration service. The stack transformation library begins
by analyzing the thread’s current stack to find live stack
frames and to calculate the size of the transformed stack. It
then transforms a frame at a time starting at the outer-most
frame (i.e., the frame of the most recently called function),
from the source to the destination stack until all frames have
been re-written.

During compilation, an analysis pass is run over the
LLVM bitcode to collect live values at function call sites.
Another pass instruments the IR to inform the various LLVM
backends to generate variable location information after
register allocation. This metadata serves two purposes –
it maps function call return addresses across architectures



(allowing the runtime to populate return addresses up the
call chain) and it tells the runtime how to locate all the
live values needed to resume the function invocation as the
thread unwinds back through the call chain on the desti-
nation architecture. The compiler also generates DWARF
frame unwinding metadata, detailing the per-architecture,
per-function register save procedure for the runtime.

To transform an individual frame, the runtime reads the
live value location metadata and copies live values be-
tween stack frames. Additionally, the runtime saves a return
address and previous frame pointer, i.e., the saved frame
pointer from the caller’s frame. The runtime must ensure the
stack adheres to the destination architecture’s ABI, meaning
that it must follow the register-save procedure for callee-
saved registers on the destination ISA. If the runtime finds a
live value in a callee-saved register, it walks down the func-
tion call chain until it finds the frame where the register has
been saved, and places the value in the correct stack slot
(some registers may still be live in the outermost function
invocation, however).

The runtime must also fix up pointers to data on the
source stack to point to the appropriate location on the desti-
nation stack (pointers to global data and the heap are already
valid due to symbol alignment and the hDSM service). When
the stack transformation runtime finds a pointer in a frame
that points to an address within the source stack’s bounds,
it makes a note that a pointer on the destination stack needs
to be resolved. When the runtime finds the pointed-to data
on the source stack during transformation, it first copies the
pointed-to data to the destination stack (as part of normal
frame re-writing) and fixes up the pointer with the address
of the newly copied to data on the destination stack.

5.4 Limitations
The prototype is limited to 64-bit architectures, as migrating
applications between 32-bit and 64-bit address spaces would
require careful data conversion between architecture-specific
formats. Currently, the toolchain does not support applica-
tions that use inline assembly, as live variable analysis in the
middle-end is not compatible with assembly. Additionally,
architecture-specific features such as SIMD extensions and
setjmp/longjmp are not supported, although we plan to study
these in future work. Finally, applications do not currently
migrate during library code execution (e.g., during calls to
the standard C library).

6. Evaluation
We evaluated the mechanisms described for container mi-
gration among heterogeneous-ISA servers on our prototype.
We wanted to answer the following questions:
• Is it possible to migrate an application container between

server machines with different ISAs at runtime?
• What are the costs for this migration?

• Does migration enable effective load balancing and con-
solidation for obtaining energy proportionality among
heterogeneous-ISA servers in the datacenter?

• What types of scheduling policies can better exploit the
heterogeneity among machines in the datacenter?
Hardware. We built our prototype with an x86 machine

and an ARM development board. The x86 is a server-class
Intel Xeon E5-1650 v2 (6 cores, 2-way hyper-threaded at
3.5GHz, 12MB of cache), with 16GB of RAM. We dis-
abled hyperthreading in the experiments. The ARM develop-
ment board is an Applied Micro (APM) X-Gene 1 Pro based
on the ARMv8 APM883208 processor (8 cores at 2.4GHz,
8MB of cache), with 32GB of RAM. The two motherboards
were connected via a Dolphin ICS PXH810 [23], which was
the fastest interconnect on the market at the time we de-
signed the experiment (up to 64Gb/s). However, our proto-
type supports any other network interface card.

Power measurements. We recorded power consumption
via both on-board sensors and external power measurement
equipment. On the x86 processor, we used Intel’s RAPL [30]
to measure power for the core and uncore, while on the ARM
board we queried the off-socket power-regulator chips via
I2C. Power was measured externally by inserting .1Ω shunt
resistors on each ATX power supply line. A data acquisition
system was built using a National Instruments 6251 PCIe
DAQ in a separate system. We acquired readings at 100Hz
on both systems in order to have readings at high resolution
(which would be low-pass filtered if recorded at the wall).

Software. Our prototype extends Popcorn Linux (based
on Linux version 3.2.14) to Linux version 3.12 (APM X-
Gene 1 Pro baseline). Where not indicated, vanilla Linux
version 3.12 was used in the evaluations. We leveraged
LLVM 3.7.1 [38] along with the clang front-end, Java 1.8.0-
25, GNU Binutils 2.27, and gold 1.11 [64] to create multi-
ISA binaries. We modified musl-libc, version 1.1.10, to cre-
ate a common TLS layout and to provide additional support
needed for pthreads across different ISAs. To run OpenMP
applications, we exploited the POMP library provided with
Popcorn [12].

Benchmarks. We selected multiple applications in or-
der to create a mix of short- and long-running workloads
as well as memory-, compute-, and branch-intensive work-
loads, simliarly to the analysis in [8, 36]. We used applica-
tions from the NAS Parallel Benchmarks (NPB) [9] because
they can be both short and long running by varying the prob-
lem size (classes A, B, and C). This mix of benchmarks cov-
ers execution times ranging from milliseconds to hundreds
of seconds, which is what it is usually expected in datacen-
ters [55] (including low-latency jobs). We focus on a worst
case utilization scenario for the ARM machine which is cur-
rently not as powerful as the x86 server [8, 36]. We scope
out network applications in order to highlight the costs of
our architecture, including performance and power, due to
execution migration.



Job Scheduling. We evaluated how to take advantage of
heterogeneous migration via scheduling. Without heteroge-
neous migration, the scheduler must partition jobs between
different architectures and jobs cannot move between ma-
chines. There exists a large body of work on scheduling for
heterogeneous processors and servers; most of this work fo-
cuses on single-ISA heterogeneity (e.g., [46]). We developed
scheduling heuristics that assign and migrate jobs while us-
ing a minimal amount of information from each machine
(CPU load), leaving the exploration of further policies on a
larger scale heterogeneous-ISA clusters as future work. One
important observation is that in heterogeneous multi-core
processors, unbalanced thread scheduling can provide sig-
nificant energy savings [21]. With that in mind, we designed
two dynamic policies which assign and dynamically migrate
applications between servers. The first policy balances the
number of threads on the x86 and on the ARM machine; the
second keeps the number of threads unbalanced on the x86
and on the ARM machines, such that the x86 machine runs
more threads than the ARM machine. We compare these two
dynamic policies to the following static policies which can-
not migrate applications, and thus cannot change scheduling
decisions after assigning threads to servers: balancing the
number of threads on two identical x86 processors; balanc-
ing the number of threads on an x86 and an ARM proces-
sor; and unbalancing the number of threads on an x86 and
an ARM processor, such that the x86 processor runs more
threads than the ARM processor. An external machine was
used to drive scheduling decisions, in addition to collecting
execution time and power (note that these measurements and
statistics are collected in the kernel itself and queried by the
external machine).

Migrating Competitors. There are few projects that sup-
port heterogeneous-ISA migration and that have source code
available [27–29]. At the time of writing we were able to use
PadMig [27] on our setup. PadMig is based on Java and is
written in Java. It exploits Java reflection to serialize and de-
serialize an application’s objects during migration. Thus, we
compared migration using a managed language versus our
prototype which migrates at the native code level.

7. Results
We evaluated the individual migration mechanisms and
the energy advantages achieved using migration in our
heterogeneous-ISA prototype. Due to space limitations, only
a subset of results are presented.

Inserting Migration Points. We wanted to understand
whether we could insert enough migration points into appli-
cations to reach the granularity of a migration point every 50
million instructions. Figures 3, 4 and 5 show a distribution of
the number of instructions between migration points for CG,
IS, and FT (class A). We ran each benchmark using the Val-
grind tool (described in Section 5.2.1) to count the number
of instructions between function calls (“Pre”). Using this in-

formation, we then inserted migration points to break up re-
gions containing larger numbers of instructions between mi-
gration points (“Post”). As the graphs show, using the anal-
ysis we were able to insert enough migration points to reach
our goal.

Migration Point Overhead. Next, we wanted to evaluate
the cost of inserting migration points into the code. Figure 6
shows the overhead for inserting migration points in the
NPB benchmark suite versus their uninstrumented counter-
part versions for various class sizes and numbers of threads.
As shown in these graphs, the overheads for instrumentation
are small compared to total application execution time. Most
overheads are less than 5%, and in general decrease as class
size and number of threads increase (several configurations
show speedups due to cache effects). These results indicate
that inserting migration points does not significantly impact
performance, as migration points consist only of a function
call and a memory read.

Unified Layout. We next evaluated the cost of the final
stage of the modified compiler – imposing a unified lay-
out by aligning symbols across multi-ISA binaries. Table 1
shows the execution time and the L1 instruction cache miss
ratios of IS and CG (classes A, B and C) versus the unaligned
version of the binary. As shown in the table, execution time
changes up to 1% in these configurations, meaning that sym-
bol alignment has a negligible impact on performance for
applications. L1 instruction cache miss ratios are strongly
correlated with application speedup/slowdown. We observed
less than a 0.001% difference in L1 data cache misses. This
demonstrates that data alignment has a small impact on per-
formance.

IS A CG A IS B CG B IS C CG C
x86Exec 0.984 1.018 1.009 1.036 0.999 1.014
x86L1IMiss 0.843 1.005 1.000 1.091 0.942 1.040
ARMExec 0.994 1.018 1.006 1.003 1.007 1.004
ARML1IMiss 0.870 2.096 2.825 1.005 1.175 1.129

Table 1. ARM and x86 execution time and L1 cache miss
ratios compiling w and w/o alignment. NPB IS and CG,
class A, B, and C compiled with -O3. Exec values higher
than 1 indicate a slowdown due to alignment, lower values a
speedup.

Stack Transformation. After evaluating overheads im-
posed by the new compiler toolchain, we then evaluated the
runtime costs of migration. Figure 7 shows the stack trans-
formation latency, in microseconds, for the CG, EP, FT, and
IS benchmarks. The plots show the range, 1st and 3rd quar-
tiles and median latencies for transforming the stack at all
migration points in the binary. The x86 processor is able to
transform the stack in under 400µs for the majority of cases,
while the ARM processor requires 2x as much latency. Re-
gardless, transformation latencies are small enough that they
do not become a bottleneck for frequent thread migrations.



Pre Post

10
0 10

1
10

2
10

3 10
4

10
5

10
6 10

7
10

8
10

9
10

10

Average #  of inst ruct ions between funct ion calls

0

1

2

3

4

5

6

F
re

q
u

e
n

c
y

Figure 3. NPB CG number of instruc-
tions between migration points.
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Figure 4. NPB IS number of instruc-
tions between migration points.
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Figure 5. NPB FT number of instruc-
tions between migration points.
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Figure 6. Wrapper code overhead. Results show slowdown over non-instrumented code.

Figure 7. Stack transformation latencies. Each plot shows
the minimum, 1st quartile, median, 3rd quartile and maxi-
mum transformation latencies experienced across all migra-
tion points for each benchmark.

In general, stack transformation latencies rise propor-
tionally with the number of stack frames and variables in
each stack frame. This is due to both parsing the compiler-
generated metadata to analyze stack frames and for copying
live values from the source to destination stack. For example,
the migration point for the function fftz2 in FT requires re-
writing 7 frames and a total 31 live values, leading to heavier
lookup and re-writing costs. This migration point caused the
longest transformation latency for x86 and ARM.

Migration. We evaluated the instantaneous power (both
processor and external readings) and CPU load when mi-
grating an application between x86 and ARM. We compared
against PadMig (Java) which serializes application objects
and sends them over the network. We migrated one func-
tion of the NPB IS B serial benchmark (full verify()) to
ARM, while the remainder of the application ran on x86. We
used NPB version 3.0 which includes IS in both Java and C.

Results when running the entire application (including both
the main benchmark on x86 and full verify() on ARM)
are depicted in Figure 8, with PadMig on the left and our
prototype on the right. The first row shows ARM power and
load, while the second shows the same for x86. The total ex-
ecution time is 23 seconds for PadMig and 11 seconds for
our solution. The results show how serializing data (from
seconds 5–7 of the bottom left graph) and de-serialization
(from seconds 9–13) requires up to 8 seconds of execution
time. Migration in our solution starts at second 8, and the
application resumes execution immediately on ARM. Power
and load in our solution spike towards the end of execu-
tion because the system is transfering lots of pages (for a
period of only 2 seconds). This is because the hDSM service
is multithreaded, even though the application is serial. The
graphs also show how the external power consumption for
this benchmark (similarly to all our benchmarks) is propor-
tional to the internal power readings, and thus we only report
internal power readings for the rest of the section.

Job Arrivals and Scheduling. We evaluated how dy-
namic scheduling using migration compares to static load
balancing. For our comparison we generated sets of jobs
from our benchmarks using a uniform distribution, evaluat-
ing both a sustained workload and periodic arrivals. Because
the X-Gene 1 is a first-generation development board with
sub-optimal power consumption, we used McPAT [40] to
project that on FinFET technology, future ARM processors
will consume 1/10th of the measured power while running
at the same clock frequency. We first compared static versus
dynamic policies on ARM and x86, but the results always fa-
vored dynamic scheduling independently of the scheduling
policy; the static policies consumed at a minimum twice the
energy and took double the time to execute. Therefore, here
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Figure 8. PadMig (Java) vs Multi-ISA binary migration
(native). Power and load traces for NPB IS B serial execu-
tion.

we only compare static policies on two (identical) x86 ma-
chines with dynamic load balancing on the ARM and x86.

Sustained workload. Figure 9 shows the total energy and
the makespan ratio (i.e., the time to run an entire set) be-
tween different policies on 10 sustained workloads. Each
workload consisted of 40 jobs that arrived sequentially with-
out overloading any of the machines. Once a job finished, an-
other job was immediately scheduled in its place. As shown
in Figure 9, job migration increases the flexibility of the sys-
tem and reduces energy consumption at the expense of ex-
ecution time (49% slowdown on average, with the balance
policy as the slowest). Despite the slowdown, the unbalanced
policy achieves up to a 22.48% reduction in energy com-
pared to the static policy (unbalanced provides on average
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Figure 9. Sustained workload. Energy consumption break-
down by machine for each scheduling policy and total
makespan ratio of the heterogeneous scheduling policies to
the static policy for different workload mixes.

a 11.61% energy reduction, while balanced is 7.88% more
energy efficient).

Periodic workload. Figure 10 shows the total energy and
the Energy Delay Product (EDP) of the static and the dy-
namic policies of 10 periodic workloads. Each workload
consisted of 5 waves of arrivals of up to 14 jobs each (in
order to not overload the two machines). Each group of ar-
rivals was spaced in time between 60 and 240 seconds. We
omitted the dynamic unbalanced results because the results
differ from the dynamic balanced policy by less than 1%.
As shown in Figure 10, migration improves both energy and
EDP. Our system provides on average a 30% energy reduc-
tion and an 11% reduction in EDP. The ARM and x86 setup
with heterogeneous-ISA migration provides an energy re-
duction for all sets (up to 66% for set-3), although EDP re-
duction is variable between sets.

8. Related Work
Heterogeneous Migration, State Transformation. Semi-
nal work from Attardi et al. [7] advocated for user-space
process migration among heterogeneous-ISA servers, and
was implemented by Smith and Hutchinson in the TUI Sys-
tem [58]. TUI implements execution migration in distributed
systems with full state conversion when applications mi-
grate across heterogeneous-ISA servers. Yalamanchili and
Hyatt [71] enumerated the differences between migrating
among homogeneous and heterogeneous machines and pro-
posed a transformation-based approach. Similarly, our work
implements execution migration targeting native compiled
applications. However instead of relying on state transfor-
mation, we modify the compiler so that binaries conform to
a common address space format to the extent that is possible.

Recently, DeVuyst et al. [22], Venkat and Tullsen [66],
and Barbalace et al. [16] introduce application migration
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different workload mixes.



among heterogeneous-ISA processors that share memory,
enforcing a (partially) common address space for threads on
each ISA. DeVuyst explores process migration by perform-
ing program state transformation together with binary trans-
lation to migrate on a heterogeneous-ISA CMP. Instead, this
paper focuses on distributed systems that enable ensemble-
level energy advantages. Also differently from these works,
we provide a formalization, a new (multi-ISA) binary archi-
tecture, operating system extensions, and a real prototype.

Multiple works exist on migration among heterogeneous-
ISA machines with object-oriented languages. Heteroge-
neous Emerald [61], implemented in the Emerald language
compiler and runtime (without OS support), passes objects
between machines using serialization/de-serialization. Pad-
Mig [27] and JnJVM [28] use reflection in the Java language
to also serialize and de-serialize objects. More recent works
such as COMET [29] and CloneCloud [20] propose migrat-
ing Java applications between portable devices running on
ARM processors and x86 servers in the cloud. Alternatively,
our design does not require object semantics or managed lan-
guages for migrating applications between heterogeneous-
ISA machines.

Heterogeneous DSM. Zhou et al. [74] introduced Mer-
maid, a heterogeneous distributed shared memory system
similar to our hDSM service. Instead of taking an abstract
approach, however, we built a prototype in order to study
its performance. Our hDSM service was also inspired by
IVY [39], although hDSM was implemented in kernel space
and not in user space. IVY uses a modified malloc, and thus
only provides DSM for heap-allocated objects. During allo-
cation, the developer must specify a data type so that dur-
ing memory page transfers each element on the page can
be converted between formats. Our design does not require
converting page content – it is in a common format across
binaries. IVY also does not facilitate thread migration, al-
though it supports multithreaded applications. A similar ap-
proach to Mermaid was implemented with a more rigorous
formalism in Mach [26]. Mach tags data objects in memory
(typed malloc, similarly to Lisp) so that at runtime a con-
verter can translate object contents. Differently from other
approaches, our design requires no code transformation and
minimal runtime conversion, reducing migration execution
overheads.

Operating System Heterogeneity Support. Operating sys-
tem designs to support heterogeneous-ISA processors have
been proposed in the context of a single platform [12, 15, 34,
42]. None of these designs have been shown to work for fully
heterogeneous-ISA processors. Moreover, they are similar to
distributed OSs and thus do not provide a generic OS exten-
sion to migrate OS containers. Helios [51], implemented on
top of Singularity [34], provides primitives to migrate a man-
aged application between ARM and x86 in a single platform.

Sprite, a network OS proposed by Ousterhout et al. [52],
aimed to hide the distributed aspect of networked machines.

Popcorn Linux [12] mimics this, though for heterogeneous
CPUs instead. In this paper we extended the Popcorn Linux
OS to migrate Linux containers between heterogeneous-ISA
servers. Thus, only interactions among processes in the con-
tainer must be propagated among machines creating the con-
tainerized environment.

Linux applications can be migrated among homogeneous
machines using checkpoint/restore functionality [5]. Other
operating systems provide homogeneous-ISA migration ca-
pabilities, e.g., Dragonfly BSD [33]. Our work contributes
seamless thread migration among heterogeneous-ISA ma-
chines without the overheads of checkpoint/restore mecha-
nisms.

9. Conclusion
Datacenters are already built with heterogeneous-ISA ma-
chines, but the fundamental software mechanisms that cur-
rently enable energy-efficiency among homogeneous ma-
chines are hindered by this heterogeneity.

In this work, we propose a redesign of the traditional soft-
ware stack in order to enable natively-compiled applications
to migrate between ISA-diverse machines in the datacenter.
Specifically, we introduce a compiler that builds multi-ISA
binaries (which conform to a single layout) and a runtime
that transforms application state that cannot be kept in a
common format. Additionally, we present an operating sys-
tem that enables elastic containers that can migrate between
kernels, based on a multiple kernel design. We built a pro-
totype based on Linux and demonstrated that applications
migrate between ARM and x86 servers faster than when us-
ing Java serialization/deserialization. Applications compiled
with our toolchain experienced no more than a 1% impact
on performance. Stack transformation, the only state trans-
formation needed in our approach during migration, took on
average less than one-half millisecond on x86 and less than
a millisecond on ARM. We show with different arrival pat-
terns that migration on heterogeneous-ISA machines can im-
prove energy efficiency up to 22% for sustained loads and up
to 66% for bursty arrivals, as compared to static assignment
among two homogeneous x86 machines; moreover, the EDP
is on average reduced by 11%.
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