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ABSTRACT
Energy consumption of real-time embedded systems is a
growing concern. It includes both static and dynamic con-
sumption and is now dominated by static consumption as
the semiconductor technology moves to deep sub-micron
scale. In this paper, we propose a new approach to efficiently
use the low-power states of multiprocessor embedded hard
real-time systems in order to reduce their static consump-
tion. In a low-power state, the processor is not active and
the deeper the low-power state is, the lower is the energy
consumption but the higher is the transition delay to come
back to the active state. Our approach increases the dura-
tion of the idle periods to allow the activation of deeper low-
power states. Offline, we use an additional task to model the
idle time and we use mixed integer linear programming to
reduce its number of preemptions. Online, we extend an ex-
isting scheduling algorithm to increase the length of the idle
periods. To the best of our knowledge, this is the first opti-
mal multiprocessor scheduling algorithm minimizing static
consumption. Simulations show that the energy consump-
tion while processors are idle is dramatically reduced with
our solution compared to existing multiprocessor real-time
scheduling algorithms.

1. INTRODUCTION
Real-time embedded systems tend to have a limited power

supply usually provided by batteries. Therefore minimizing
their energy consumption is an important concern, for in-
stance, in the automotive and the energy distribution fields.
Chips used for designing these systems have generally a
small amount of RAM and Flash memories. Besides, they
have a limited number of levels of cache, usually one or two,
and of small size, typically in the range of kilobytes. Further-
more, these domain fields do not use graphical processing
units or devices such as touchscreen or LCD display. Pro-
cessors and their associated levels of cache therefore consume
most of the total energy consumption of such embedded sys-
tems [32, 11]. Finally, safety-critical systems are subject
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to certification constraints and therefore concerned by the
predictability of the execution time of hard real-time tasks.
Industrials designers of such systems are therefore slowly
considering multiprocessors [29] for their next generation of
systems. Consequently, this work focuses solely on reducing
the energy consumption of processors, a key challenge for
the design of these hard-real time embedded multiproces-
sors systems of next generation.

The energy consumption of processors can be divided into
two categories: dynamic and static consumption. Dynamic
consumption depends on the activity of the processors. On
the other hand, static consumption is mainly due to leak-
age current and is present even when no operations are per-
formed by the system. Dynamic consumption used to dom-
inate static consumption for micrometer-scale semiconduc-
tor technology. Therefore, most of the research works were
dedicated to reduce dynamic consumption by using DVFS
(Dynamic Voltage and Frequency Scaling) which decreases
the frequency of processors ([7, 14]).

Within these works, only few consider static consump-
tion and usually only once dynamic consumption cannot
be further reduced. However, several research works from
Austin [4], Lesueur [21] or Awan [6] show that while dynamic
consumption used to be preponderant, static consumption
is now responsible for the majority of the energy consump-
tion. According to Buttazzo and al. [18], the leakage current
already accounted for 50% of the total power dissipation in
90 nm technologies and this trend is only increasing as the
VLSI technology is scaling down to deep sub-micron do-
main. Thus we believe static consumption should be con-
sidered before dynamic consumption. Another advantage of
targeting static consumption is that, unlike DVFS, the low-
power states of the other components of the system, such as
devices, can be activated.

This paper focuses on reducing the static consumption
using the low-power states of a processor during which no
instruction is executed. A transition delay, and therefore
an energy penalty, is then required to get the system back
to the active state. Systems usually have several low-power
states available. A more efficient low-power state means
that more components are turned off, thus the transition
delay required to reactivate the system increases. On hard
real-time systems, time constraints must always be fulfilled.
Thus, the system must take into consideration transition
delays when choosing and activating a low-power state such
that the processor has enough time to wake up and execute
tasks in time to avoid deadline misses.

So far, existing works have addressed the management of



static consumption on hard real-time multiprocessor systems
using only partitioned or global non-optimal solutions. The
contribution of this paper is, to the best of our knowledge,
the first global optimal multiprocessor scheduling algorithm
reducing static consumption. Note that in this paper, op-
timal means that the scheduling algorithm is optimal with
regard to the utilization of the processors, it does not refer
to the reduction of the energy consumption.

Our algorithm is called LPDPM for Linear Programming
DPM. We consider periodic tasks characterized by their Worst
Case Execution Time (WCET) and their period. Mixed in-
teger Linear programming is used offline to generate a sched-
ule guaranteeing the schedulability of the task set and min-
imizing the static energy consumption. Then, the online al-
gorithm schedules tasks inside intervals. It further extends
the length of the idle periods, especially when tasks do not
consume all their WCET. When tasks use their WCET, the
energy consumption of LPDPM while processors are not ex-
ecuting tasks is up to 8 times smaller than with recently
proposed optimal multiprocessor schedulers.

A previous work [24] was based on a similar approach but
used a heuristic to reduce the static energy consumption.
Furthermore, it only gave preliminary results on a specific
processor without providing neither a detailed analysis of
these results nor a complexity analysis of our solution. In
this work, we present a complete solution improving both
the offline algorithm and the online scheduler.

The remainder of this paper is as follows. Section 2 de-
scribes the main solutions found in the literature. Then sec-
tion 3 defines the processor and task models. The general
approach is presented in section 4 while the offline method
and the online algorithm are detailed in sections 5 and 6.
Section 7 presents the complexity of our solution, section 8
evaluates the efficiency of LPDPM and section 9 concludes.

2. RELATED WORK
This section covers existing solutions to minimize the static

energy consumption on both uniprocessor and multiproces-
sor systems.

2.1 Uniprocessor systems
On uniprocessor systems, Lee et al. [22] were the first to

propose a solution to increase the length of the idle periods.
When the processor is idle, their idea is to delay future exe-
cutions of tasks to keep the processor in a low-power state.
When a task is released while the processor is sleeping, a
procrastination interval (i.e. the time spent delaying a task
execution) is computed such that no deadline miss can occur.
The complexity of computing the procrastination interval is
O(n2) for a task set with n tasks. Jejurikar et al. [20] and Niu
et Quan [28] then proposed solutions to extend the procras-
tination interval. The main drawback of these uniprocessor
solutions is complexity because computing the procrastina-
tion intervals requires anticipating executions of tasks. For
example, the solution proposed by Niu et Quan. [28] is opti-
mal in the sense that delaying execution of tasks any further
will cause at least one deadline miss, but its complexity is
O(N2), with N the number of jobs within the hyper-period.

Still on uniprocessor systems, Awan and Petters [5] use
a different model with both soft and hard real-time tasks.
Offline, they compute the maximal procrastination interval
to reduce the overhead. Online, they use slack stealing to
further increase the time spent in a low-power state if tasks

do not use their worst case execution time.
Overall, the literature provides efficient solutions to re-

duce the static consumption of uniprocessor systems while
multiprocessor systems have not been as much covered.

2.2 Multiprocessor systems
Multiprocessor scheduling algorithms can be classified in

two categories: partitioned and global. Partitioned schedul-
ing algorithms bind tasks to a specific processor offline and
cannot be optimal, while global scheduling algorithms allow
online task migration and can be optimal.

Partitioned scheduling.
Partitioned scheduling is used by Chen et al. [13] for pe-

riodic task systems. They first partition tasks and then use
power-aware uniprocessor scheduling algorithms to decrease
both static and dynamic consumptions. Seo et al. [31] and
Haung et al. [17] also use partitioned scheduling. Offline,
they partition tasks, then on-line allow task reallocation
when a task releases a new job. Indeed, jobs can finish
earlier than expected and the idea is to migrate them, but
only once, in order to create larger idle periods. It reduces
the static energy consumption but a substantial complexity
is then required online to know which job should migrate.

Based on their uniprocessor work, Awan and Petters [6]
propose a partitioned approach for heterogeneous multipro-
cessor systems for which each core differs on its execution
frequency. Tasks partitioning is a two-step process. It first
assigns tasks to processors according to the energy efficiency
of each task on each processor. Then, it takes into con-
sideration the deepest low-power state usable for each core
to reassign tasks such that deeper low-power states can be
used. Thus, this approach only focuses on reducing static
consumption in the second step of the partitioning process.

However, solutions using partitioned scheduling can only
schedule task sets with a limited global utilization. Indeed
a partitioned scheduling algorithm cannot have a utilization
bound larger than 50%. Also, it makes it more difficult to
use the additional idle processor time when tasks finish ear-
lier than expected because tasks cannot migrate. Indeed, if
two tasks finish earlier on two different processors, it creates
two idle periods that cannot be gathered because migration
is not allowed.

Global scheduling.
Global scheduling is used by Bhatti et al. [9]. Their goal is

to use as few processors as possible such that the other pro-
cessors can be in a low-power state. When one or more tasks
are ready to be scheduled, their algorithm always keeps the
same processor busy and activates another one only when
required. However, their scheduling algorithm is not opti-
mal. Furthermore, like the approach proposed by Lee et al.
for uniprocessor systems, computing the procrastination in-
tervals is done online and is costly: the complexity is O(n3)
at each scheduling event.

In conclusion, all these algorithms try to efficiently use the
low-power states of processors to reduce the static consump-
tion by increasing the size of the idle periods. However, these
solutions are online and thus require a significant complexity
to generate large idle periods. Furthermore, they only try
to extend the length of the idle periods without considering
the characteristics of each low-power state.



3. MODEL
This section introduces the model of processors and tasks

used in the remainder of this paper. Let us stress that we
do not consider in this work processors used in high-end
servers: we focus on processors used by hard real-time sys-
tems. Safety critical embedded systems are slowly transi-
tioning from uniprocessor systems to multiprocessors sys-
tems [29], due to certification constraints. Consequently, the
majority of existing embedded real-time systems only have
two cores. Algorithm design and evaluations can therefore
be made assuming a limited number of cores, typically at
most 4. Besides, such processors have L1 and L2 caches of
limited size, i.e. up to some tens of kilobytes for the L1
caches and up to a few megabytes for the L2. They do not
use energy consuming devices such as touchscreen or LCD
displays. Finally, moving to multicore architectures also
means moving to deep sub-micro VLSI technology, where
the leakage current and therefore the static energy is be-
coming more important than the dynamic energy [18].

Existing works ([13, 6]) do not integrate the preemptions
and migrations costs in their model. The number of preemp-
tions and migrations then becomes a criterion to evaluate the
efficiency of a proposed scheduling algorithm. This is what
is done for instance for evaluating the efficiency of global
optimal multiprocessor algorithms. Other works have em-
pirically studied these costs in multiprocessor algorithms [8].
Results show that in a underloaded system, preemption and
migration costs are similar and predictable when the work-
ing set size does not trash the L2 cache. Besides, these costs
depend on the preemption length but not on the task set
size. In this work, we also compute the number of preemp-
tions and migrations generated by our solution and then
compare their number with existing global optimal multi-
processor algorithms. Section 8 analyzes these results and
further discusses this point.

3.1 Processors
We use a system with m identical processors and each

processor has ns low-power states. In a low-power state, a
processor cannot execute any instruction and its consump-
tion is reduced. We further assume that each low-power
state can be activated independently of the state of the other
processors. This assumption prevents the use of a low-power
state that deactivates a level of cache shared between a set
of processors (typically the L2 cache or higher). We plan
to remove this restriction in future work. However, such a
deep low-power state is rarely available on embedded chips,
since they have no or one level of cache. This statement is
based on an analysis of the low-power states of the entire
ARM Cortex processor family.

The most efficient low-power state has index 0. The con-
sumption of state s is Cs. Coming back from a low-power
state to the active state requires a transition delay and
the processor cannot execute any instruction while waking
up. Let Pens be the consumption penalty to come back
from low-power state s. The more energy efficient a low-
power state is, the more components are turned off and
the more important is the consumption required to come
back to the active state. Thus C0 < C1 < ... < Cns and
Pen0 > Pen1 > ... > Penns. To avoid having to deal with
a particular case for the idle mode, a fake low-power state
was added when no low-power state can be activated. It
has index ns and with Cns = 1 and Penns = 0. The mini-

mum idle period for which activating a given low-power state
saves more energy than letting the processor idle is called
the Break-Even time (BET). The BET of each low-power
state s is BETs and BETns = 0.

Embedded processors usually have between three and four
low-power states ([3, 2, 1]). The first low-power state has a
short transition delay because it typically only stops the pro-
cessor while preserving the content of all caches and main-
taining all clocks active. On the other hand, deeper low-
power states gradually shutdown clocks and caches and thus
require a longer transition delay to setup the clocks and re-
populate the caches. The ARM Cortex-A9 MPCore proces-
sor [1] can have up to four cores. Each core and each cache
has its own power level. Thus each core can be separately
put in all available low-power states, except the deepest low-
power state which allows powering off the L2 cache. It can
therefore only be activated once all cores are idle. We in-
tend to integrate this constraint in future work to be able
to schedule clustered and heterogeneous systems.

3.2 Tasks
We consider a set Γ of n independent, synchronous, pre-

emptible and periodic tasks. Tasks can migrate from one
processor to another. Each task τi has a Worst Case Execu-
tion Time Ci (WCET) and a period Ti. Tasks have implicit
deadlines, i.e. deadlines are equal to periods. The task set
hyper-period is named H and is the least common multiple
of all periods of tasks in Γ. A job j is an instance of a task
and is characterized by its WCET j.c and its deadline j.d.
The job set JΓ contains all jobs of Γ scheduled during the
hyper-period H. Utilization ui of task τi is the ratio Ci

Ti

and task set global utilization is the sum of all utilizations:
U =

∑n−1
i=0 ui.

The objective being to decrease the static energy con-
sumption, we do not consider situations where U ∈ N+.
Indeed, with this assumption, U processors would always be
active while m−U processors would always be in the deep-
est low-power state. Thus we assume global utilization U is
such as m − 1 < U < m. And if m − x − 1 < U < m − x,
x processors can be left in a low-power state such that the
assumption m− 1 < U < m holds.

As in Lemerre et al. [25], the hyper-period is divided in
intervals, an interval being delimited by two task releases.
I is the set of intervals and |Ik| is the duration of the kth

interval. A job can be present on several intervals, and we
note wj,k the weight of job j on interval k. The weight of
a job on an interval is defined as the fraction of processor
required to execute job j on interval k. Jk is the subset of
JΓ that contains all active jobs in interval k. Ej is the set
of intervals on which job j can run. It must contain at least
one interval. The example task set in figure 1 has two tasks
and four jobs (jobs 1 to 3 from τ1 and job 4 from τ2). In
this example, E4 is {1, 2, 3} and J1 is {1, 4}.

4. APPROACH
We claim that the approach used by the existing solu-

tions is not efficient to create large idle periods and reduce
the static energy consumption. This section discusses this
statement and introduces our approach.

4.1 Problems with existing solutions
The existing scheduling algorithms minimizing static con-

sumption mostly use partitioned scheduling. Thus they can-



Figure 1: 2 tasks with periods of 4 and 12.

not create large idle periods because it creates idle periods
on each processor. Migration should be authorized in order
to merge idle periods from different processors. This is the
approach followed by Seo et al. [31] and Huang et al. [17].
These solutions are thus no longer exclusively using parti-
tioned scheduling which do not authorize migrations. They
are instead using global scheduling, as Bhatti et al. [9].

All these solutions are online and the online complexity
prevents them from being usable (e.g. O(n3) for Bhatti with
n being the number of tasks). This complexity is due to the
computation required to decide if a task should migrate to
another processor or if a task should be delayed to increase
the length of an idle period. Deciding on whether a task can
be delayed requires anticipating the execution of future jobs.
The solution proposed by Niu et al. [28] on uniprocessor
systems requires a computation over the next hyper-period
to anticipate all future job executions.

This complexity required to create large idle periods comes
from the fact that these solutions are based on schedul-
ing algorithms like Global-EDF which are work-conserving.
A work-conserving algorithm is a scheduling algorithm in
which no processor can be left idle if a task is ready to be
executed. For example, Bhatti et al. say that their solution
can be used with both Global-EDF and Global-LLF.

This approach is not suitable for a scheduling algorithm
which aims to create large idle periods. It should not be
based on Global-EDF or Global-LLF. Scheduling decisions
should instead be taken based on the knowledge of the cur-
rent workload. Whether or not a task should be delayed does
not depend on a parameter of the associated task model (i.e.
deadline, WCET, period, ...), but on the current state of the
system. For example, a task should be delayed if a processor
is currently in a low-power state but should be executed if
all processors are currently active.

To illustrate the above claim, let a task set with two tasks
τ1 and τ2 whose WCET and period respectively are (1.5, 2)
and (2, 3). The hyper-period is 6. This task set is sched-
uled on a two processors system (c1 and c2). As shown in
figure 2a, a work-conserving multiprocessor scheduling algo-
rithm like Global-EDF would schedule τ1 on c1 and τ2 on c2
when the system starts. The next two jobs of τ1 would be
scheduled on c2 at t = 2 and t = 4 while the second job of
τ2 would be executed on c1 at t = 3. To reduce the num-
ber of idle periods, one would want to be able to schedule
the second job of τ2 on c2 as illustrated by figure 2b. This
is obviously not possible at t = 3. Thus a computation is
required to delay τ2 to t = 3.5. Other computations are
then necessary at t = 4 for τ2 and at t = 4.5 for τ1. This
example shows that delaying task executions is required to
create large idle period. This costly operation is performed
3 times on one hyper-period on this simple task set. This
approach is therefore not usable with realistic task sets.

Figure 2: Example with 2 tasks τ1 (1.5, 2) and τ2 (2, 3).

(a) Without delayed execution (b) With delayed execution

4.2 Offline approach
To avoid these issues, we adopt a different approach: we

generate an energy efficient schedule offline. Being offline
means that all scheduling decisions can be thought before-
hand. These decisions are made such that the complete
schedule is optimized over a hyper-period to reduce static
consumption. Another advantage is the low complexity of
the online algorithm because all scheduling decisions are
taken offline. Online, the algorithm deals with situations
where tasks do not consume all their WCET to extend the
existing idle periods.

In contrast to classical multiprocessor scheduling algo-
rithms using global scheduling, our solution is non work-
conserving. That is processors can be idle while active tasks
are awaiting execution.

The schedule computed offline minimizes the energy con-
sumption when tasks used their WCET. Then, online, the
energy consumption can only decrease when tasks finish
their execution before reaching their WCET. This approach
guarantees a minimal energy consumption, which can only
be reduced online.

Offline, we use linear programming to express both the
real-time constraints of the system and the objective of mini-
mizing the static energy consumption. The computed sched-
uled therefore schedules and delays tasks when appropriate
to activate the deep low-power states. The linear program
computes a weight for each task on each interval. This com-
putation is based on the WCET of tasks. Then, online, tasks
are scheduled inside intervals given these weights.

This scheduling approach based on linear programming
has been used in [25] to compute offline a partial but valid
schedule. It builds global optimal real-time multiprocessor
scheduling algorithms. Besides, the advantage of this ap-
proach is to be able to add specific scheduling objectives and
custom constraints in the linear equation system. For exam-
ple, Megel et al. [26] used it with the objective of decreasing
the number of preemptions and migrations for optimal mul-
tiprocessor global scheduling. We also used it to reduce the
energy consumption of mixed-criticality systems in [23].

Note that the linear program computes a schedule for one
hyper-period. A computation on more hyper-periods is also
possible and would be more efficient because it would cover
transitions between hyper-periods. However, the linear pro-
gram would be twice as big which would not be worth the
very slight improvement in energy consumption savings.

The constraints and the objective function are respectively
detailed in the next subsection and in section 5.

4.3 Real-time constraints
A set of constraints are first required to guarantee the

schedulability of the task set, i.e. that no deadline is missed.
These constraints are [25]:



∀k,
∑
j∈Jk

wj,k ≤ m (1)

∀k, ∀j, 0 ≤ wj,k ≤ 1 (2)

∀j,
∑
k∈Ej

wj,k × |Ik| = j.c (3)

Equation 1 means that global utilization on an interval
cannot exceed the number of processors. Thus any interval
is schedulable. The second inequality forbids the duration of
a job on an interval to be negative or to exceed the length of
the interval. This is necessary so that a task can be sched-
uled in an interval. Finally, the third equality guarantees
that all jobs are completely executed.

Solving the linear program made of equations (1), (2) and
(3) gives a valid schedule. But it does not minimize the
energy consumption. An objective function must be added.

5. OFFLINE LINEAR PROGRAM
Equations (1), (2) and (3) ensure that the temporal con-

straints of the system are satisfied in the generated sched-
ule. Then, to minimize the static consumption, this section
enhances the initial linear equation system by adding new
constraints and an objective function.

5.1 Idle task τ ′

To ease modeling the problem, we use an additional pe-
riodic task τ ′. τ ′ accounts for the time where processors
are expected to be idle. This additional task has a period
of H and utilization of m − U , thus lower than 1 because
we assume m − 1 < U < m. The task set now has n + 1
tasks and global utilization becomes equal to the number of
processors m. Introducing τ ′ forbids two processors to be
idling simultaneously because they would be both executing
τ ′. It should be noted that τ ′ does not represent the actual
idle time when tasks are executed. Indeed, as tasks usually
do not use all their WCET at run-time, processors can be
idle while not executing τ ′ and multiple processors can be
idle simultaneously. Modeling the expected idle time with τ ′

is just a way to help generating a schedule with guaranteed
idle periods in the worst case scenario.

Inside an interval, the scheduling of τ ′ is trivial when the
weight of τ ′ is either 0 or 1. However, when τ ′ does not
occupy a full interval, the execution of τ ′ inside the interval
plays a role in the reduction of the energy consumption. It
should be executed either at the beginning or at the end of
the interval. Indeed, when we merge this idle period with
an idle period from a neighbor interval, we increase the op-
portunity to use deeper low-power states.

In our previous work [24], we used a heuristic to reduce
the energy consumption. The linear program did not mini-
mize the static energy consumption but the number of pre-
emptions of τ ′. Scheduling τ ′ at the beginning or at the
end of the interval was decided online. In this paper, we
refine this last step. We split τ ′ into two subtasks whose
respective weights are computed in the linear program. The
first subtask is executed at the beginning of the interval and
the second at the end of the interval. This allows an of-
fline computation of the best solution reducing the energy
consumption based on the characteristics of each low-power
state.

5.2 Scheduling τ ′ inside intervals
Dividing τ ′ into two subtasks executed at the boundaries

of the intervals cannot increase the energy consumption in-
side an interval. The only situation which cannot be handled
with this assumption is when τ ′ is executed in the middle of
an interval, without any contact with the boundaries of the
interval. However, this kind of schedule can never be more
energy efficient than the same schedule with τ ′ being exe-
cuted either at the beginning or at the end of the interval.
Indeed the length of the idle period is not reduced and the
idle period can be merged with another idle period from a
neighbor interval. It should be noted that the two subtasks
of τ ′ can never be preempted. This affirmation is discussed
in section 6.

Let bk and ek be the weights of the two subtasks of τ ′ in
interval k with 0 ≤ bk ≤ 1 and 0 ≤ ek ≤ 1. The weight of
τ ′ in interval k is thus bk + ek, and an idle period lasts for
the whole interval k if bk + ek = 1. To schedule intervals
online, these two subtasks are respectively given the highest
and lowest priorities, no matter their weight, so that they
are executed at the beginning and at the end of the interval.

With τ ′, the three equations defined in section 4 are still
valid. However, as the global utilization is now equal to the
number of processors, the inequality in equation (1) becomes
an equality.

5.3 Computing the length of the idle periods
Minimizing the static consumption requires computing

the length of all idle periods to know which low-power state
can be activated. In an interval, two distinct executions of
τ ′ are possible. However, the execution of τ ′ at the end of
interval k also includes the execution of τ ′ at the beginning
of interval k + 1. Thus there is only one idle period per
interval, with the exception of the first interval.

Let pk be the length of the idle period of interval k. It
includes both the execution of τ ′ at the end of interval k (i.e.
ek) and the execution of τ ′ at the beginning of interval k+1
(i.e. bk+1). Note that it means the idle period of interval k
can start in interval k + 1 if ek = 0.

When the weight of τ ′ is 1 in interval k + 1, this means
the idle period of interval k also includes the idle period of
interval k + 1. Thus pk is defined as:

pk =

{
ek × |Ik|+ bk+1 × |Ik+1|+ pk+1 if bk+1 + ek+1 = 1

ek × |Ik|+ bk+1 × |Ik+1| otherwise

(4)
Thus the idle period starting at the end of interval k may

include the idle period starting at the end of interval k + 1
(i.e. pk+1) when bk+1 + ek+1 = 1 (i.e. τ ′ occupies the full
interval k + 1).

Then, we remove the idle periods which are counted twice
and introduce an additional variable qk which gives the real
length of each idle period:

qk =

{
pk if bk + ek 6= 1

0 otherwise
(5)

The idle period is kept only if τ ′ in the current interval
k does not occupy the whole interval. Otherwise, the idle
period is already included in qk−1 and is not kept. The
length of each idle period is now known.

To illustrate these notations, figure 3 shows how to sched-
ule task τ ′ on an example which H = 16. The WCET of τ ′



is 8. There are 4 intervals and ∀k, |Ik| = 4. The values of all
variables are shown in table 1. The column 0 represents the
idle period starting with the execution of b1. 2 idle periods
of length 6 and 2 are created in the end of intervals 1 and 3.
The variable qk discards the idle period p2 as the first idle
period lasts across intervals 1 and 2.

Table 1: Example with 4 intervals, τ ′.c = 8.

k 0 1 2 3 4
bk ∗ |Ik| 0 0 2 0 1
ek ∗ |Ik| 0 2 2 1 0
pk 0 6 2 2 0
qk 0 6 0 2 0

Figure 3: Schedule of τ ′ from table 1.

5.4 Minimizing the static energy consumption
To know which low-power state is used on each idle period,

let LPs,k be a binary variable. LPs,k = 1 if the low-power
state s is activated during the idle period starting in the end
of interval k and LPs,k = 0 otherwise. Each idle period with
qk > 0 must activate one and only one low-power state:

∀k,
∑
s

LPs,k =

{
0 if qk = 0

1 otherwise
(6)

However, a low-power state cannot be activated if the idle
period is smaller than the BET. Therefore this additional
constraint is needed:

∀k, ∀s, LPs,k = 0 if qk ≤ BETs (7)

The consumption while in low-power state s is Cs and the
penalty consumption required to come back to the active
state is Pens. Thus the consumption Pk of the idle period
starting at the end of interval k is:

Pk =
∑
s

LPs,k(Cs × qk + Pens) (8)

As we assume all tasks use their WCET, the consumption
of the initial task set does not impact the overall energy
consumption. Thus, minimizing the static energy consump-
tion means minimizing on each interval the consumption of
the idle task. Thus the final objective function of the mixed
integer linear program (MILP) is:

Minimize
∑
k

Pk (9)

Solving the linear program gives a weight for each task on
each interval. The next section then details how tasks are
scheduled inside intervals.

5.5 Example
To illustrate the effectiveness of our approach, figure 4

pictures the schedule using LPDPM of a task set composed
of three tasks (with WCETs and periods of (1.4, 3), (3, 4)
and (2.5, 6)) on a two processors system. Global utilization

Figure 4: LPDPM schedule.

is 1.63. The hyper-period is 12 and there are 6 intervals.
LPDPM creates only one idle period with this specific task
set, less than other schedulers like RUN or U-EDF. The
weight of τ ′ is 1 on intervals 3 and 4 and 0 in intervals 1
and 6. In interval 2, the weight of τ ′ is only given to τ ′e and
is 0.1. In interval 5, the weight of τ ′b is 0.3 to extend the
current idle period.

6. ONLINE SCHEDULER
The objective of the online scheduler is to schedule tasks

inside intervals according to the weights computed by the
linear system. In this section, the idle task τ ′ includes two
subtasks τ ′b and τ ′e. These two subtasks are never executed
simultaneously.

This section first details our solution when tasks use their
WCET. Then, idle periods are extended when tasks finish
their execution before their WCET.

6.1 Tasks using their WCET
Scheduling tasks in an interval is similar to scheduling a

set of tasks that share the same deadline. Several schedulers
are suitable in such a situation like EDZL [33], FPZL [15]
or IZL [26]. However, they have not been designed with the
idea of gathering idle periods.

Our solution is based on FPZL (Fixed Priority until Zero
Laxity) from Davis and Burn [15]. With FPZL, each job has
a static priority and jobs are scheduled according to their
priorities. The scheduler monitors pending jobs to schedule
them when their laxity becomes zero. The laxity of a job
is the difference between the remaining time in the interval
and the remaining execution time of a job in the interval. It
is enough for the scheduler to track the pending task with
the lowest laxity in order to avoid deadline to be missed, as
all tasks share the same deadline.

We chose FPZL because the two subtasks of τ ′ need to be
handled differently than the other tasks. Jobs are assigned
a priority based on their execution time in the interval, the
longer the execution time the higher the priority. And to be
executed at the beginning of the interval, τ ′b has the highest
priority and τ ′e the lowest.

These two tasks can never be preempted. τ ′b has the high-
est priority and the only scenario to trigger a preemption of
τ ′b would be when a task τi reaches a laxity of 0 and no other
processor can be preempted. This scenario is impossible be-
cause it would mean all processors are running tasks with a
laxity of 0 while τ ′b still has a remaining execution time. On
the other hand, τ ′e has the lowest laxity and thus can only
be scheduled when its laxity reaches 0, and thus cannot be
preempted during its execution.

FPZL is not an optimal multiprocessor scheduling algo-
rithm for periodic tasks but is optimal when tasks share a
common period. To the best of our knowledge, this optimal-
ity has never been proved. Thus theorem 1:



Theorem 1. FPZL is optimal for implicit-deadline tasks
sharing a common period.

Proof. Suppose a task τ does not finish its execution
by the end of the interval, that is a deadline miss occurs.
Task τ misses its deadline, thus τ has a negative laxity.
This also means that τ was not scheduled when its laxity
became zero, that is the scheduler was not able to preempt
a task to schedule τ . This can only occur when all scheduled
tasks have a zero laxity and cannot be preempted. But if
all tasks have a zero laxity, it means all processors are going
to be used until the end of the interval while a portion of τ
would still have to be executed. And no idle period could
have been created before because at least m tasks still have a
positive execution time. It means global utilization is greater
than m, this is a contradiction to the assumption that global
utilization is no more than m. This proves theorem 1.

6.2 Tasks using their AET
A job may not consume all its WCET but instead an Ac-

tual Execution Time (AET), that is 0 < AET < WCET .
This subsection shows how the online algorithm takes advan-
tage of the slack time or dynamic idle time released by tasks
when AET < WCET . The slack time cannot be known
before the execution.

The slack time, noted ∆t, is released when a job finishes
at a time t earlier than its WCET. Our goal is to increase
the length of existing idle periods using the dynamic idle (or
slack) time thus generated. By construction, the dynamic
idle time is generated by a different processor than the one
that executes τ ′ when τ ′ is being scheduled (either τ ′b or τ ′e).

How ∆t can be redistributed to τ ′ depends on the state
of τ ′ at time t. We note τ ′b.e the remaining execution time
of τ ′b in the interval (respectively τ ′e.e for τ ′e). The following
scenarios are possible at time t:

• τ ′b is being executed from the beginning of the interval,
that is the mth processor executing τ ′ is in a low-power
state. The dynamic idle time can be yielded to τ ′b,
i.e. τ ′b.e = τ ′b.e + ∆t. The current execution of τ ′b
is therefore extended and the processor executing τ ′b
stays longer in a low-power state.

• τ ′b is not currently executing. The behavior of the
scheduler depends on whether τ ′e is already being exe-
cuted at time t.

If τ ′e is not already being executed. The dynamic idle
time can be given to τ ′e. Thus τ ′e.e = τ ′e.e + ∆t. But
τ ′e cannot have a negative laxity, thus portion of the
generated idle time may be lost.

Else it means τ ′e is already being executed. Thus the
dynamic idle time cannot be given to τ ′e and is lost.

When we state that some idle time is lost, we mean that
it cannot be used to extend the idle period represented by
τ ′b or τ ′e. However, the scheduler could decide to set another
processor in a low-power state if possible. If not, a DVFS
strategy could be used in order to reduce the dynamic con-
sumption of the system, as in [14]. As stated previously we
currently do not include this DVFS possibility in our simu-
lation in order to only evaluate the gain provided by DPM.

We illustrate how the algorithm behaves when AET is
different from WCET in Figure 5. It pictures the schedule
of the task set given in Table 2 (during a single interval). We

Table 2: Example task set schedule in Figure 5.

τ1 τ2 τ3 τ4 τ ′b τ ′e
WCET 6 5 5 3 5 0
AET 4 4 5 2

Figure 5: Schedule of task set from table 2.

suppose the first processor is in a low-power state when the
interval starts thus τ ′ is executed at the start of the interval.

When τ1 ends at t = 4, 2 units of dynamic idle time are
released. As τ ′b is currently executed, this dynamic idle time
is yielded to τ ′b which now has a remaining execution time of
3. τ ′b then ends at t = 7 and the other tasks are scheduled.
At t = 8, when τ2 ends, a dynamic idle time of 1 is released
and given to τ ′e. When τ4 ends at t = 10, execution time of
τ ′e is extended by 1 and τ ′e is executed. To know whether a
low-power state can be activated, the scheduler looks at the
weight of τ ′e in the following interval.

7. COMPLEXITY
This section discusses both the space and time complexi-

ties of LPDPM. These complexities depend on the number of
tasks n and the number of intervals I in a hyper-period. I is
maximal when no job share the same deadline, that is when
periods are prime numbers between them. In this worst-
case scenario, each job creates a new interval. However, the
n jobs whose deadline is the hyper-period only create one
interval. Thus I is equal to the number of jobs in a hyper-
period minus n− 1, the aforementioned jobs whose deadline
is H. The number of jobs J in a hyper-period is:

J =

n∑
i=1

H

Ti
(10)

The number of intervals I is therefore bounded by:

I ≤ J − n+ 1 (11)

7.1 Space complexity
For each task, the weights of jobs in each interval must

be embedded in the memory of the system as they are used
online by the scheduler. Alternatively, execution times of
jobs in each interval can be stored (i.e. wj,k × |Ik|). That
is n× I values. However, if this matrix is empty enough, it
might be more efficient to store each non-empty value with
its interval and task associated. Let e be the number of non-
empty values in the aforementioned matrix, e × 3 integers
need to be stored instead.

Furthermore, the priorities of all tasks can also be com-
puted offline on all intervals. That is another n × I values
to store. The required space of our solution is thus:

min(n× I, e× 3) + n× I (12)

Therefore, compared to the size of flash memories used to
store read-only data, between several tens of kilobytes and
several megabytes, the space complexity is not an issue.



7.2 Time complexity
Our approach limits the online time complexity by per-

forming most of the computations offline. The offline time
complexity depends on the number of jobs in a hyper-period,
leading to a theoretical combinatorial explosion. However,
in practice, typical embedded hard real-time systems usu-
ally have a limited number of tasks, between ten and fifteen,
and their periods often share common values. The number
of jobs in a hyper-period is therefore reasonable. Besides,
letting the computation running for several hours is not a
problem compared to the time required to design and vali-
date an industrial system. Thus, the time complexity of our
linear system is not an issue.

Online, the scheduler chooses the task to schedule using
priorities. In our implementation, the priorities of τb and
τe are defined offline, while their weights are dynamically
computed, as described in subsection 6. Then in the worst-
case, choosing the tasks to run requires pulling the m + 1
tasks with the highest priority from the ordered task list
because the weight of τb can be null. Thus the complexity of
the online scheduler is O(m) at each boundary of an interval.
Within an interval, scheduling decisions are taken in O(1).

8. EVALUATION
This section compares our solution LPDPM with two other

optimal multiprocessor algorithms through simulations. Sub-
section 8.1 first details the simulation setup. The next two
subsections then evaluate both the energy consumption and
the number of context switches.

8.1 Simulation environment
A simulator is used to generate random task sets and

schedule them. Each simulation is done on two hyper-periods
to take into account the transitions between intervals even
if we do not consider them in our solution. Each task set
contains 10 tasks and is scheduled on 4 processors. For each
task set, utilization of each task is computed randomly be-
tween 0.01 and 0.99 with a uniform distribution using the
UUniFast-Discard algorithm from Davis and Burns [16], an
extended version of the UUniFast algorithm from Bini and
Buttazzo [10] targeting multiprocessor systems. The period
of each task is also chosen randomly between 10ms and
100ms with a uniform distribution. The task sets with a
hyper-period larger than 10s are rejected to remain in a re-
alistic bound of typical industrial systems. For each task
set, global utilization is set between 3 and 4.

For each utilization value, 500 random task sets are gener-
ated and scheduled by three optimal multiprocessor sched-
ulers: RUN [30], U-EDF [27] and LPDPM. RUN and U-EDF
are designed to reduce the total number of preemptions and
migrations without regard to static consumption. Indeed, to
the best of our knowledge, LPDPM is the first optimal mul-
tiprocessor algorithm minimizing static consumption. The
implementation of LPDPM uses IBM ILOG CPLEX to solve
the linear problems. To speed up our analysis, we arbitrar-
ily set to 60 seconds the maximal time allowed to resolve a
linear system. With this constraint, the solver does not com-
pute the optimal solution but almost always gives a solution
(less than 1% of the task sets were rejected).

Table 3 describes the characteristics of the low-power states
we consider in our simulations. The definition of these three
states as well as their energy consumption and transition

delays is based on an analysis of the DPM hardware capa-
bilities of the STM32L [3] (based on the ARM Cortex-M3
processor) and the FreeScale PowerQUICC microcontrollers
(e.g. MPC551x [2]). These microcontrollers are typical in
current safety-critical embedded systems within the auto-
motive [12] and energy distribution fields for instance [19].
The energy consumption in the active state is normalized to
1. In the Sleep state, only the processor is stopped while the
Stop state turns off all clocks including the PLL but retains
the RAM and register contents. And in Standby state, the
RAM and register contents are lost.

Table 3: Low-power states used for the simulation.

State Energy consumption Transition delay
Run 1
Sleep 0.5 0.1 ms
Stop 0.1 2 ms

Standby 0.00001 10 ms

8.2 Overall idle energy consumption
Figure 6 pictures the overall energy consumption of RUN

and U-EDF compared to LPDPM when processors are idle
(i.e. while executing τ ′ in LPDPM). LPDPM is always the
most energy efficient of these three algorithms. This fig-
ure shows that using LPDPM is between 5 and 9 times
more energy efficient than using RUN and U-EDF when
global utilization is equal to 3.1. When global utilization
increases, the difference between all schedulers is reduced
because the idle time available to use the low-power states
is also reduced. And the energy consumption is almost iden-
tical when global utilization is close to 4.

The significant difference between all schedulers is due to
the negligible energy consumption of LPDPM when global
utilization is close to 3. Indeed, the energy consumption in
Standby mode is almost zero and the energy consumption
of LPDPM is almost only due to the transition delay re-
quired to come back to the Run mode. The overall energy
consumption of the system could also be computed but it
would include the energy consumption while tasks are being
executed. However this energy consumption is a constant
value and cannot be reduced.

Table 4 shows on average the number of activation of each
low-power state for each scheduler and for all the global
utilization between 3 and 4. LPDPM mostly uses the most
efficient state, i.e. the Standby state, and almost never use
the least efficient state. On the other hand, other schedulers,
especially RUN, often use the Stop state and only a limited
number of times the Standby state. This table is consistent
with figure 6 where LPDPM always has the lowest energy
consumption and RUN the highest.

The same simulations were also performed with a different
number of processors (m set to 2 and 8) and a different
number of tasks within the task sets (n set respectively to 5
and 20). The overall idle energy consumption of LPDPM is
always lower with LPDPM than with RUN or U-EDF and
the difference between all schedulers always is similar.

8.3 Number of preemptions
Figure 7 plots the mean number of preemptions for each



Figure 6: Overall idle energy consumption of RUN & U-EDF
compared to LPDPM (energy consumption of LPDPM = 1).

Table 4: Low-power states utilization

Sleep Stop Standby
LPDPM 0.1 2.1 4.6
U-EDF 1.15 18.1 4.4
RUN 15.1 48.3 1.1

scheduler and for each global utilization. Results exhibit
that LPDPM is at most 1.3 less efficient than RUN and
always slightly better than U-EDF. Note that contrary to
these algorithms, LPDPM does not yet try to minimize the
total number of preemptions. This makes LPDPM viable,
and improving the linear problem to reduce the number of
preemptions of the regular tasks is part of our future work.

9. CONCLUSION
Static consumption due to leakage current is a major con-

cern when scaling down semiconductor technology as it dom-
inates dynamic consumption. However, power-aware schedul-
ing algorithms have mainly focused on the reduction of dy-
namic consumption. They use the low-power states of pro-
cessors only once the frequency cannot be further reduced.
And existing algorithms aiming at reducing static consump-
tion only consider uniprocessor systems or are using parti-
tioned or global non-optimal approaches.

This paper focused on the problem of minimizing the
static energy consumption of embedded multiprocessor hard
real-time systems. Unlike existing solutions, our solution
is offline and thus has a limited online complexity. The
hyper-period is divided in intervals and linear programming
is used to assign weights to tasks inside intervals. Using lin-
ear programming allows to express both the real-time con-
straints and the objective of minimizing the static consump-
tion. Then, the online scheduler dynamically schedules tasks
inside intervals. Online, the scheduler chooses the deepest
low-power state that can be activated. The slack time pro-
duced by the system when tasks do not consume their worst-
case execution time is used to enlarge existing idle periods.

Simulations show that our solution is more energy effi-

Figure 7: Mean number of preemptions.

cient than recently proposed optimal multiprocessor sched-
ulers. When the idle time is maximal, the idle energy con-
sumption of other schedulers is more than 8 times more im-
portant than LPDPM. Besides, LPDPM produces a similar
number of preemptions and migrations than these optimal
algorithms which have been specifically designed with the
objective of minimizing the number of preemptions.

As future work, we plan to define online rules to avoid
creating additional idle periods when a task finishes earlier
than its WCET by anticipating the execution of active jobs
present in the next intervals. Another plan is to study the
robustness of our solution using the actual execution time of
tasks. Another objective would be to relax the assumption
m − 1 < U < m to schedule systems with more idle time
to exploit the low-power states of processors. This could be
achieved by adding an idle task on each processor.

Finally, we would like to take into account the tempera-
ture factor as the energy consumption but also the reliability
of multiprocessor systems depend on this parameter. The
sleeping processor could for instance be changed to share the
load and decrease the temperature of processors.
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Dynamic and aggressive scheduling techniques for
power-aware real-time systems. In Proc. of the 22nd
IEEE Real-Time Systems Symp., pages 95–, 2001.

[8] A. Bastoni, B. B. Brandenburg, and J. H. Anderson.
An empirical comparison of global, partitioned, and
clustered multiprocessor edf schedulers. In Proc. of the
31st Real-Time Systems Symp., pages 14–24, 2010.

[9] M. Bhatti, M. Farooq, C. Belleudy, and M. Auguin.
Controlling energy profile of rt multiprocessor systems
by anticipating workload at runtime. In SYMPosium
en Architectures nouvelles de machines, 2009.

[10] E. Bini and G. C. Buttazzo. Biasing effects in
schedulability measures. In Proc. of the 16th
Euromicro Conf. on Real-Time Systems, pages
196–203, 2004.

[11] A. Carroll and G. Heiser. An analysis of power
consumption in a smartphone. In Proc. of the 2010
USENIX conference on USENIX annual technical
conference, pages 21–21, 2010.

[12] D. Chabrol, D. Roux, V. David, M. Jan, M. A. Hmid,
P. Oudin, and G. Zeppa. Time- and angle-triggered
real-time kernel for powertrain applications. In Proc.
of the Design, Automation Test in Europe Conference
Exhibition, pages 1060–1063, 2013.

[13] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware
energy-efficient scheduling of real-time tasks in
multiprocessor systems. In Proc. of the 12th IEEE
Real-Time & Embedded Technology & Applications
Symp., pages 408–417, 2006.

[14] J.-J. Chen and C.-F. Kuo. Energy-efficient scheduling
for real-time systems on dynamic voltage scaling (dvs)
platforms. In Proc. of the 13th IEEE Int. Conf. on
Embedded and Real-Time Computing Systems and
Applications, pages 28–38, 2007.

[15] R. Davis and A. Burns. Fpzl schedulability analysis.
In Proc. of the 17th IEEE Real-Time and Embedded
Technology and Applications Symp., pages 245 –256,
2011.

[16] R. Davis and A. Burns. Improved priority assignment
for global fixed priority pre-emptive scheduling in
multiprocessor real-time systems. Real-Time Syst.,
47(1):1–40, Jan. 2011.

[17] H. Huang, F. Xia, J. Wang, S. Lei, and G. Wu.
Leakage-aware reallocation for periodic real-time tasks
on multicore processors. In Proc. of the 5th Intl. Conf.
on Frontier of Computer Science and Technology,
pages 85–91, 2010.

[18] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and
G. C. Buttazzo. Applying real-time interface and
calculus for dynamic power management in hard
real-time systems. Real-Time Syst., 47, March 2011.

[19] M. Jan, V. David, J. Lalande, and M. Pitel. Usage of
the safety-oriented real-time OASIS approach to build
deterministic protection relays. In Proc. of the 5th

Intl. Symp. on Industrial Embedded Systems, pages
128–135, 2010.

[20] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware
dynamic voltage scaling for real-time embedded
systems. In Proc. of the 41st annual Design
Automation Conf., pages 275–280, 2004.

[21] E. Le Sueur and G. Heiser. Dynamic voltage and

frequency scaling: The laws of diminishing returns. In
Proc. of the Workshop on Power Aware Computing
and Systems, pages 1–8, 2010.

[22] Y.-H. Lee, K. Reddy, and C. Krishna. Scheduling
techniques for reducing leakage power in hard
real-time systems. In Proc. of the 15th Euromicro
Conf. on Real-Time Systems, pages 105 – 112, 2003.

[23] V. Legout, M. Jan, and L. Pautet. Mixed-criticality
multiprocessor real-time systems: Energy
consumption vs deadline misses. In 1st workshop on
Real-Time Mixed Criticality Systems, 2013.

[24] V. Legout, M. Jan, and L. Pautet. An off-line
multiprocessor real-time scheduling algorithm to
reduce static energy consumption. In First Workshop
on Highly-Reliable Power-Efficient Embedded Designs,
2013.

[25] M. Lemerre, V. David, C. Aussaguès, and
G. Vidal-Naquet. Equivalence between schedule
representations: Theory and applications. In Proc. of
the IEEE Real-Time and Embedded Technology and
Applications Symp., pages 237–247, 2008.

[26] T. Megel, R. Sirdey, and V. David. Minimizing task
preemptions and migrations in multiprocessor optimal
real-time schedules. In Proc. of the 31st IEEE
Real-Time Systems Symp., pages 37–46, 2010.

[27] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic.
Reducing preemptions and migrations in real-time
multiprocessor scheduling algorithms by releasing the
fairness. In Proc. of the 17th Intl. Conf. on Embedded
and Real-Time Computing Systems and Applications,
pages 15 –24, 2011.

[28] L. Niu and G. Quan. Reducing both dynamic and
leakage energy consumption for hard real-time
systems. In Proc. of the Intl. Conf. on compilers,
architecture, and synthesis for embedded systems,
pages 140–148, 2004.

[29] P. Parkinson. Safety, security and multicore. In
Advances in Systems Safety, pages 215–232. 2011.

[30] P. Regnier, G. Lima, E. Massa, G. Levin, and
S. Brandt. Run: Optimal multiprocessor real-time
scheduling via reduction to uniprocessor. In Proc. of
the IEEE 32nd Real-Time Systems Symp., pages
104–115, 2011.

[31] E. Seo, J. Jeong, S. Park, and J. Lee. Energy efficient
scheduling of real-time tasks on multicore processors.
IEEE Trans. Parallel Distrib. Syst., 19(11):1540–1552,
2008.
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