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Abstract—Mixed Criticality helps reducing the impact of
pessimistic evaluation of Worst Case Execution Time for real-
time systems. This is achieved by hosting low-criticality tasks on
a same hardware architecture in addition to the classical high-
critical tasks, when considering two-criticality levels. The Time-
Triggered paradigm (TT) is a classical approach within industry
to develop high-criticality tasks. Extending TT systems in order
to integrate the support of MC scheduling therefore requires the
generation of two schedule tables, one for each criticality level.
However, a switch between the schedule tables must not lead to
an unschedulable situation for the high-criticality tasks. In this
work, we show how a linear programming approach can be used
to generate these schedule tables in a consistent way for dual-
critical problems on multiprocessor architectures.

I. INTRODUCTION

Industrial fields, such as automotive [4] or control automa-
ton [7], consider the Time-Triggered [9] (TT) paradigm as a
solution to build hard real-time systems. In the TT paradigm,
the tasks are triggered by the advancement of time. The
scheduling decisions are usually computed off-line and made
available to the Real-Time Operating System (RTOS) through
a schedule table. While the TT paradigm provides a predictable
execution, the static scheduling approach is considered to lead
to a poor resource utilization in the average case. The design of
TT systems and the associated schedulability demonstrations
must indeed be performed in the worst-case situation. These
unused processing capabilities motivate the adding of Mixed-
Criticality (MC) scheduling techniques within TT systems [1].

The goal of MC scheduling is to increase the schedulability
of the low-criticality tasks, while still guaranteeing in the
worst-case scenario the schedulability of the high-criticality
tasks. In a previous work, we focused on the use of the elastic
task model to include MC scheduling within TT systems [8].
In this work, we rely on the task model mainly used within the
MC scheduling community [16], called the Vestal task model.
This task model extends the classical periodic task model with:
1) two Worst-Case Execution Time (WCET) values, named
Ci(LO) and Ci(HI), and 2) a criticality level χi, which
can be either LO or HI . Then, two execution modes are
assumed, namely HI and LO, and the system starts in the
LO mode. Ci(LO) is the maximum allowed execution time
for the task in the LO mode, while Ci(HI) is the maximum
allowed execution time for the task in the HI mode. For
the HI-criticality tasks we have Ci(LO) < Ci(HI) and for
the LO-criticality tasks Ci(LO) = Ci(HI). The rationale is
that the higher the criticality level is, the more conservative
the verification process is and hence the greater the WCET
value is. Whenever a HI-criticality task exceeds its assigned

Ci(LO) value, the system switches to the HI mode. In this
mode, only the schedulability of the HI-criticality tasks is
ensured, assuming Ci(HI) for the WCET values.

Extending TT systems to cope with MC scheduling re-
quires the definition of two schedules tables, named SLO and
SHI . SLO (resp. SHI ) is used while the system is in the
LO (resp. HI) mode. [1] has stated the TT schedulability
conditions that apply on these schedules for dual-criticality
MC instances of task sets. The main issue is to guarantee that
a mode change from SLO to SHI cannot lead to an unfeasible
schedule for the HI-criticality tasks, i.e. the remaining time
is not sufficient to completely schedule all the HI-criticality
tasks. SHI is indeed concerned by the schedulability of the
HI-criticality tasks but should be built so that the schedulabil-
ity of the LO-criticality tasks is maximized in SLO. Building
SLO and SHI cannot therefore be made independently in order
to improve the resource utilization in the average case.

We propose two approaches to build SLO and SHI for
(dual-criticality) instances of MC task sets. Both are based
on the use of a linear programming approach. The remainder
of this paper is as follows. Section II describes the related
work. Section III formulates our linear programs to handle the
criticality mode change in TT scheduling. Section VI provides
a first analysis of our solutions and section VII concludes.

II. RELATED WORK

Note that existing work focuses on finite set of jobs whose
exact arrival times are known a priori, as the results can be
easily extended in order to address TT systems. The proposed
algorithm must indeed only be applied over the hyper-period
of the periodic task set being considered.

The first work on using MC scheduling within TT sys-
tems [1] studied how to generate SLO and SHI that can
correctly schedule a MC job set modeled using the Vestal
task model. It was inspired by the mode-change approach
used to increase the flexibility of the TT scheduling in [5].
As the TT schedulability of MC tasks is NP-hard in the strong
sense, they propose a polynomial-time algorithm for building
SLO and SHI that is sufficient but not necessary. That is, the
algorithm can fail to generate such tables for schedulable MC
job sets, but if it succeeds then tables can correctly schedule
them. The algorithm first computes a total priority ordering
of the jobs using the Own-Criticality Based Priority (OBCP)
algorithm [2]. Based on this priority ordering, SLO is first built
assuming Ci(LO) for all the jobs. Then, SHI is generated
assuming this time Ci(HI) for all the jobs (we remind that
when χ = LO, Ci(LO) = Ci(HI)).



[15] introduces a much more elaborated algorithm to build
at the same time SLO and SHI assuming a slot scheduling
approach. HI-criticality jobs are first splitted into two jobs
noted JLO

i and J∆
i . JLO

i represents the Ci(LO) of that job
in the LO mode, while J∆

i represents the additional WCET
assumed when in the HI mode (i.e. ∆i = Ci(HI)−Ci(LO)).
Release time and deadline of these sub-jobs are computed so
that each job has a maximum interval for its execution. A
precedence constraint between sub-jobs is added in order to
ensure a correct execution. Then, the proposed algorithm uses
an heuristic to explore the set of possible scheduling decisions
represented as a tree search. Based on the demand of HI-
criticality jobs, a backtracking heuristic is used to cut from
the tree search paths leading to unfeasible schedules.

[14] focuses on adding MC scheduling support within TT
legacy systems, where the existing schedule table is consid-
ered to be SHI . The proposed algorithm extends the slot-
shifting based scheduling [6] in order to keep track of the
spare capacities in each interval for both the HI and the
LO-criticality jobs (named scHI and scLO respectively). A
negative spare capacity means that some execution time must
be borrowed from the other slots. If scLO < 0 then a HI-
criticality job has exceeded its Ci(LO) value and therefore
only HI-criticality jobs must be executed. Finally, the legacy
TT schedule is used only when scHI = 0. Note that this legacy
TT schedule can prevent SLO to be build, while [15] or [1]
could produce a correct SLO. It is the price to pay to avoid
additional certification costs by keeping unchanged SHI .

When considering TT systems, the previously introduced
algorithms are called Single Time Table per Mode (STTM).
[13] proves that the STTM approach dominates MC scheduling
algorithms that define the priorities of jobs depending on the
criticality mode (called FPM for Fixed Priority per Mode).
They propose an algorithm in order to transform a FPM
priority assignment into a set of STTM tables.

In this paper, the objectives of our contributions aim at
revisiting these approaches for TT MC systems using Linear
Programming (LP) techniques.

III. PROBLEM DESCRIPTION USING LP APPROACH

We first introduce the task model and notations we use in
the remainder of this paper, before presenting our two linear
programming approaches for building SLO and SHI .

As stated in the introduction, we rely on the Vestal task
model and consider only two criticality levels, a restriction
often assumed in MC scheduling [3]. We only state addi-
tional notations not introduced in the previous sections. Let
Γ = {τ1, τ2, ..., τn} be a set of n independent, synchronous,
preemptible and implicit deadline tasks. Tasks can migrate
from one processor to another. We note M the number of
processors. Each task τi ∈ Γ has the following temporal
parameters τi = (χi, Pi, Ci(LO), Ci(HI)) with Pi the period
of the task. Let H be the hyper-period of the task set. It is
equal to the least common multiple of all periods of tasks in
Γ. As in [11], the hyper-period H is divided in intervals, an
interval being delimited by two task releases. We note nHI

the number of HI-criticality tasks and nLO the number of
LO-criticality tasks (thus nHI + nLO = n).

A job j can be present on several intervals and Ei is the
set gathering these intervals. We note wj,k the weight of job
j on interval k. We denote by I the set of intervals and |Ik|
the duration of the kth interval. Jk is the set of jobs within

interval k. The weight of each job is the amount of processor
necessary to execute job j on interval |Ik| only (it is not an
execution time but a fraction of it). JΓ is the job set of all jobs
of Γ scheduled during the hyper-period H .

A job jLO represents an instance of a LO-criticality task,
while jHI is an instance of a HI-criticality task. JLO and
JHI are the job sets of respectively all the LO and the HI-
criticality jobs from Γ. We note wLO

j,k the weight of job j

in interval k in SLO, while wHI
j,k is the weight of job j in

interval k in SHI . A RTOS is used to detect when a jHI , i.e.
HI-criticality job, exceeds its Ci(LO) value.

Finally, note that our approach to build SHI and SLO

is based on the use of LP to compute off-line the weights
of each job on all intervals. Then, within an interval either
a dynamic or static approach can be used to schedule jobs.
As we are considering the TT approach, in this work we
assume that the triggering of jobs is also computed off-line,
for instance by using McNaugthon’s algorithm [12]. These
scheduling decisions are also stored in SHI and SLO. In this
paper, we do not focus on this part of our scheduling approach.

IV. LP SCHEDULING FOR HI -MODE FIRST: LPMC-HI

In our first proposal, SHI and SLO are built in two separate
steps, although the objective used when building SHI prepares
the computation of SLO. We express this solution as two linear
programs, one for each table to build, and we name it LPMC-
HI for Linear Programming for Mixed-Criticality HI-mode
first. However, the constraints of the first linear program are the
schedulability of JHI tasks, while its objective is to optimize
the schedulability of JLO tasks in HI-mode. This prepares
the input, i.e. the wLO

j,k for the jobs from JHI , for the second
linear programs dealing with the LO-mode.

First, we focus on building SHI . The classical temporal
schedulability constraints [11] are expressed to compute the
optimal job weights on each interval for all the jobs from JΓ.
First, the sum of all job weights on an interval must not exceed
the processor maximum capacity:

∑

j∈Jk

wHI
j,k ≤ M, ∀k ∈ I (1)

Then, the weight of each job must not exceed each processor
maximum capacity (no parallel jobs):

0 ≤ wHI
j,k ≤ 1, ∀k ∈ I, ∀j ∈ JΓ. (2)

Finally, we express two different constraints for the completion
of jobs from JLO and JHI . First, only the schedulability of
the jobs from JHI has to be ensured and therefore must be
completely executed:

∑

k∈Ej

wHI
j,k × |Ik| = Ci(HI), ∀j ∈ JHI . (3)

Second, the schedulability of the jobs from JLO may not be
ensured while in SHI . This means that some jobs from JLO

may not be completely executed:
∑

k∈Ej

wHI
j,k × |Ik| ≤ Ci(LO), ∀j ∈ JLO. (4)

As far as SHI is concerned, our objective is to prepare the
building of SLO in order to maximize the schedulability of
JLO, while still guaranteeing in the worst-case scenario the



schedulability of JHI . To this end, we introduce a decision
variable to account when a job from JLO has been completely
executed, i.e.

∑
k∈Ej

wHI
j,k × |Ik| = Ci(LO). Let Fj be this

decision variable that is equal to 1 if the job j from JLO has
been completely executed, and 0 otherwise. Then, our objective
function can be defined as follows:

Maximize
∑

j∈JLO

Fj (5)

This objective function computes the weights of a schedule in
which a maximum number of jobs from JLO are completely
executed, while ensuring the schedulability for jobs from JHI .

We now focus on the LO-mode. For building SLO we have
to compute wLO

j,k for each job from JΓ assuming that its WCET

is equal to Ci(LO). That is the execution time of each job j
from JHI is reduced by ∆i (see section II). For each job j in
JHI , wLO

j,k is equal to wHI
j,k till the Ci(LO) is not exceeded.

This differs from [1], where at a mode change, no scheduler
could have given more time to the HI-criticality jobs than the
proposed algorithm. In LPMC-HI, these jobs can be delayed
in order to completely execute, over a set of intervals, some
LO-criticality jobs.

Next, we have to compute wLO
j,k for all the jobs from JLO.

While SHI was generated with a maximum number of jobs
from JLO completely executed, our second linear program
could only compute the weights of the jobs from JLO that
have not yet been scheduled. However, we believe this reduces
the search space when building SLO, as we remind that only
jobs from JHI must be scheduled in SHI . While a reduced
search space seems an interesting property, as it decreases the
execution time required for solving the linear program, we
believe it also reduces the schedulability bound that can be
achieved. To compute wLO

j,k for all the jobs from JLO, the
classical temporal constraints only have to be modified in order
to use wLO

j,k for all the jobs from JHI as fixed values and not
as variables. In the next equation, the value of a variable w is
noted w′ to depict this point :

∑

jLO∈Jk

wLO
j,k +

∑

jHI∈Jk

wLO′

j,k ≤ M, ∀k ∈ I (6)

0 ≤ wLO
j,k ≤ 1, ∀k ∈ I, ∀j ∈ JLO. (7)

∑

k∈Ej

wLO
j,k × |Ik| = Ci(LO), ∀j ∈ JLO. (8)

Note that this second LP has no objective function as any fea-
sible solution given by the solver generates a valid scheduling.

LPMC-HI can lead to situations where SLO cannot be
computed. The jobs from JHI are indeed concentrated in
some particular intervals in SHI and then their total weights
are simply reduced over these intervals to match their lower
Ci(LO). However, redistributing the weights of jobs from
JHI while computing SLO would increase the schedulability
bound that can be achieved for the jobs from JLO. Section VI
illustrates this point using an example.

V. LP SCHEDULING FOR BOTH LO- AND HI -MODES:
LPMC-BOTH

In our second approach, we explore such an alternative
strategy for computing the weights in order to improve the
success ratio of the scheduling. We thus consider the genera-
tion of SLO and SHI at the same time, i.e. within the same

linear program, and therefore name this approach LPMC-Both.
We split each HI-criticality job into two sub-jobs: jLO and
j∆ and consider jLO as a LO-criticality job that we added in
JLO. A precedence constraint will be expressed later to ensure
building correct schedules. LPMC-Both is similar to [15] and
we therefore use the same notations as in this work (see
sect. II). Additionally, we note w∆

j,k the weight of a job j∆.

A first set of constraints must be expressed for SHI in order
to ensure the schedulability of all the jobs from JHI . This is
similar to the equations (1), (2) and (3). The only difference is
that now the weight of each job in SHI is defined as follows:

wHI
j,k = wLO

j,k + w∆
j,k, ∀k ∈ I, ∀j ∈ JHI (9)

Precedence constraints are then required to ensure a correct
schedule of each job from JHI , that is the w∆

j,k must be null

till
∑k

m=1 w
LO
j,m×|Im| ≤ Ci(LO). This prevents sub-jobs jLO

and j∆ to be present in the same interval in SLO. Avoiding
this situation ensures that a criticality mode change from SLO

to SHI is possible, i.e. that it does not lead to an unfeasible
schedule, at every point where all the jobs from JHI can first
exceed their Ci(LO) values. This corresponds to the switch
through property described in [5] for these points. Note that
this property is ensured in our first scheduling approach by how
we compute wLO

j,k for each job j from JHI . In the first interval

k in which a job jHI exceeds its Ci(LO) value, note that the
two sub-jobs jLO and j∆ can be present. However, as wHI

j,k

cannot be higher than 1 (eq. 2), the weight left to j∆ in interval
k is constrained so that a schedule where jLO and j∆ cannot
be executed in parallel can be found (i.e w∆

j,k +wLO
j,k ≤ |Ik|).

Finally, in the other intervals the solver has no constraint for
computing w∆

j,k.

Then, a second set of constraints must be expressed for
SLO in order to ensure the schedulability of all the jobs
from JLO. These constraints are identical to the equations (7)
and (8), in addition to the following constraint:

∑

j∈Jk

wLO
j,k ≤ M, ∀k ∈ I (10)

Finally, we use the same objective function as (5), that is max-
imize the number of schedulable jobs from JLO. It therefore
requires the same decision variable to account when a job from
JLO has been completely executed. In the end, if a solution
can be found, then the output of LPMC-Both is the weights
of each job to be used to build both SLO and SHI .

VI. FIRST ANALYSIS OF LPMC-HI AND LPMC-BOTH

We first compare LPMC-HI and LPMC-Both in terms of
complexity. We first focus on LPMC-HI. The total number of
decision variables in the first LP of LPMC-HI is equal to |I|×n
for the weights of all jobs, plus |JLO| for the Fj . In the second
LP of LPMC-HI, this number is reduced to |I| ×nLO as only
the weights of jobs from JLO are computed when building
SLO. In the first (resp. second) LP of LPMC-HI, the number
of constraints is equal to its number of variables plus |I|+ |JΓ|
(resp. |I|+|JLO|) due to the equations (1), (3) and (4) (resp. (6)
and (8)). We now focus on LPMC-Both. Compared to LPMC-
HI, the total number of decision variables in LPMC-Both is
increased by 2×|I|×nHI . This comes from additional weights
introduced by the job splitting and for implementing the prece-
dence constraints. The number of constraints of LPMC-Both
is equal to the sum of: |I|×(n+1)+ |JΓ| for computing SLO,
|I|× (nHI +1)+ |JHI | for computing SHI and 2×|I|×nHI



χi Pi Ci(LO) Ci(HI)
τ1 LO 2 1.5 1.5

τ2 HI 4 2 3

τ3 HI 3 1 2

TABLE I. TASK SET WITH τ1 A LO-CRITICALITY TASK.

for dealing with the precedence constraints. The complexity of
LPMC-Both is therefore higher than the complexity of LPMC-
HI. However, the computational complexity of LPMC-HI and
LPMC-Both depends on the number of intervals, which is
limited in industrial configurations usually showing harmonic
periods ([7], [4]).

We now compare both approaches in terms of efficiency.
Table I depicts a task set running on a dual-core (M = 2)
and made of three tasks where τ1 is a LO-criticality task.
Figure 1 shows SHI computed by LPMC-HI. The third and
sixth instances of τ1 cannot be completely executed in the
intervals I4 and I8, leading to F1 = 4 (out of 6). Note that
the second and fifth instances of τ1 span over 2 intervals, i.e.
respectively I2, I3 and I6, I7. The other instances require
only 1 interval. When trying to compute the corresponding
SLO, wLO

3,4 is equal to 0.5, as the Ci of the second instance
of τ3 is reduced by 1 unit of time in interval I4. However, the
third instance of τ1 cannot be scheduled as wLO

1,4 should be
equal to 0.75 in order to satisfy the equation (8). But then, the
equation (6) would not be satisfied as the utilization would be
equal to 2.5 and hence higher than M . A valid SLO cannot
therefore computed. As shown by Figure 2, both SLO and
SHI can be computed using LPMC-Both thanks to its ability
to distribute the weights over all the intervals.

Fig. 1. Possible SHI for the task set of table I computed by the LPMC-HI
leading to an unfeasible SLO .

Fig. 2. Possible SHI (top) and SLO (bottom) for the task set of table I
computed by LPMC-Both.

VII. CONCLUSION

The Time-Triggered (TT) paradigm is one solution used
within industrial fields to design hard real-time systems subject
to certification constraints. While the TT paradigm provides
interesting properties, such as determinism, this comes at the
price of low resource utilization in the average case. Mixed-
Criticality (MC) scheduling aims at providing an efficient use

of the processing capabilities available in the average case
through the execution of low-criticality tasks, while ensuring
schedulability for the high-criticality in the worst-case.

TT relies on a off-line computation of scheduling deci-
sions made available at run-time through a schedule table.
In this work, we consider dual-critical problems requiring the
construction of two schedule tables. The main difficulty when
building them is to ensure that switching from the LO table
to the HI table is possible, i.e. does not lead to unfeasible
schedules when a HI criticality task exceeds its LO behaviour.
We propose two approaches, named LPMC-HI and LPMC-
Both, based on the use of linear programs to build these tables.
We are currently implementing them in order to evaluate their
success ratio in scheduling of job sets whose utilizations are
uniformly distributed, as in [15]. In future work, we plan
to integrate additional constraints in the generation of TT
schedule, such as energy consumption as presented in [10].
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